
DEPARTMENT OF COMPUTER SCIENCE AND

ENGINEERING

DIGITAL NOTES

ON

COMPUTER ORGANIZATION

R22A0508

B. TECH II YEAR–II SEM

(R22) REGULATION

(2024-25)

Prepared by

N. Siva Kumar, Asst.Professor

MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY

(Autonomous Institution–UGC, Govt.of India)
Recognized under2(f)and12(B) of UGC ACT1956

(Affiliated to JNTUH ,Hyderabad,ApprovedbyAICTE-AccreditedbyNBA&NAAC–‘A’Grade-

ISO9001:2015Certified)

Maisammaguda, Dhulapally(PostVia.Hakimpet),Secunderabad–500100,TelanganaState,India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Vision

To acknowledge quality education and instill high patterns of discipline making the

students technologically superior and ethically strong which involves the

improvement in the quality of life in human race.

Mission

To achieve and impart holistic technical education using the best of infrastructure,

outstanding technical and teaching expertise to establish the students into competent

and confident engineers.

 Evolving the center of excellence through creative and innovative teaching learning

practicesforpromotingacademicachievementtoproduceinternationallyacceptedcompetiti

veand world class professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1–ANALYTICALSKILLS

To facilitate the graduates with the ability to visualize, gather information, articulate, analyze,

solve complex problems, and make decisions. These are essential to address the challenges of

complex and computation intensive problems increasing their productivity.

PEO2–TECHNICALSKILLS

Tofacilitatethegraduateswiththetechnicalskillsthatpreparethemforimmediateemploymentandpurs

ue certification providing a deeper understanding of the technology in advanced areas of

computer science and related fields, thus encouraging pursuing higher education and research

based on their interest.

PEO3–SOFTSKILLS

To facilitate the graduates with the soft skills that include fulfilling the mission, setting goals,

showing self confidence by communicating effectively, having a positive attitude, get

involved in team-work, being a leader, managing their career and their life.

PEO4–PROFESSIONALETHICS

To facilitate the graduates with the knowledge of professional and ethical responsibilities by

paying attention to grooming, being conservative with style, following dress codes, safety

codes, and adapting them to technological advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B.Tech Computer Science and Engineering, the graduates

will have the following Program Specific Outcomes:

1. FundamentalsandcriticalknowledgeoftheComputerSystem:-

AbletoUnderstandtheworkingprinciples of the computer System and its components, Apply

the knowledge to build, asses, and analyze the software and hardware aspects of it.

2. The comprehensive and Applicative knowledge of Software Development: Comprehensive

skills of Programming Languages, Software process models, methodologies, and able to plan,

develop, test, analyze, and manage the software and hardware intensive systems in

heterogeneous platforms individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the professional, managerial,

interdisciplinary skill set, and domain specific tools in development processes, identify their

search gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates should possess the following:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering

fundamentals,andanengineeringspecializationtothesolutionofcomplexengineeringproblems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex

engineering problems reaching substantiated conclusions using first principles of

mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex

 engineeringproblemsanddesignsystemcomponentsorprocessesthatmeetthespecifiedneedswit

happropriateconsideration for the public health and safety, and the

 cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research

methods including design of experiments, analysis and interpretation of data, and synthesis of

the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern

engineering and IT tools including prediction and modeling to complex engineering activities

with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to

the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering

solutions in societal and environmental contexts, and demonstrate the knowledge of, and need

for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as member or leader in
diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the

engineering community and with society at large, such as, being able to comprehend and write

effective reports and design documentation, make effective presentations, and give and

receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the

engineering and management principles and apply these to one’s own work, as a member and

leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage
in independent and life-long learning in the broadest context of technological change.

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

II Year B.Tech. CSE- II Sem L/T/P/C

 3/-/-/3

(R22A0508) COMPUTER ORGANIZATION

COURSE OBJECTIVES:
To expose the students to the following:

1. How Computer Systems work & the basic principles

2. Instruction Level Architecture and Instruction Execution

3. The current state of art in memory system design

4. How I/O devices are accessed and its principles.

5. To provide the knowledge on Instruction Level Parallelism

UNIT I
Basic Functional units of Computers: Functional units, basic Operational concepts, Bus

structures. Software, Performance, Multiprocessors, Multicomputer. Data Representation:

Signed number representation, fixed and floating point Representations.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division

Algorithms. Error detection and correction codes.

UNIT II
Register Transfer Language and Micro Operations: RTL- Registers, Register transfers, Bus

and memory transfers. Micro operations: Arithmetic, Logic, and Shift micro operations,

Arithmetic logic shift unit.

Basic Computer Organization and Design: Computer Registers, Computer instructions,

Instruction cycle. Instruction codes, Timing and Control, Types of Instructions: Memory

Reference Instructions, Input – Output and Interrupt.

UNIT III
Central Processing Unit organization: General Register Organization, Stack organization,

Instruction formats, Addressing modes, Data Transfer and Manipulation, Program Control, CISC

and RISC processors

Control unit design: Design approaches, Control memory, Address sequencing, micro program

example, design of CU. Micro Programmed Control.

UNIT IV
Memory Organization: Semiconductor Memory Technologies, Memory hierarchy,

Interleaving, Main Memory-RAM and ROM chips, Address map, Associative memory-

Hardware organization. Match logic. Cache memory-size vs. block size, Mapping functions-

Associate, Direct, Set Associative mapping. Replacement algorithms, write policies. Auxiliary

memory- Magnetic tapes etc

UNIT V
Input –Output Organization: Peripheral devices, Input-output subsystems, I/O device interface, I/O

Processor, I/O transfers–Program controlled, Interrupt driven, and DMA, interrupts and exceptions. I/O

device interfaces – USB

Pipelining and Vector Processing: Basic concepts, Instruction level Parallelism Throughput and Speedup,

Pipeline hazards.

TEXT BOOKS:
1. Computer Organization – Carl Hamacher, Zvonks Vranesic, SafeaZaky, Vth Edition, McGraw Hill.

2. Computer Systems Architecture – M.Moris Mano, IIIrd Edition, Pearson/PHI

REFERENCE BOOKS:
1. “Computer Architecture and Organization”, 3rd Edition by John P. Hayes,WCB/McGraw-Hill

2. “Computer Organization and Architecture: Designing for Performance”, 10th Edition by

i. William Stallings, Pearson Education.

3. “Computer System Design and Architecture”, 2nd Edition by Vincent P. Heuring and Harry

ii. F. Jordan, Pearson Education.

COURSE OUTCOMES:
Upon completion of this course, students should be able to:

1. Student will learn the concepts of computer organization for several engineering applications.
2. Student will develop the ability and confidence to use the fundamentals of computer organization

asa tool in the engineering of digital systems.

3. An ability to identify, formulate, and solve hardware and software computer engineering problems
usingsound computer engineering principle

4. To impart the knowledge on micro programming

5. Comprehend the concepts of advanced pipelining techniques

INDEX

UNIT NO TOPIC PAGE NO

I

Basic Functional units of Computers 1-10

Data Representation 11-13

II

Register Transfer Language and Micro

Operations

14-27

Basic Computer Organization and Design 28-42

III

Central Processing Unit organization 43-50

Control unit design 51-57

IV Memory Organization 58-65

V

Input –Output Organization 66-74

Pipelining and Vector Processing 74-78

AY:2024-25
COMPUTER ORGANIZATION

1
DEPT OF CSE

UNIT I

Syllabus:

Basic Functional units of Computers: functional units, basic Operational concepts, Bus structures.

Software, Performance, Multiprocessors, Multicomputer.

Data Representation: Signed number representation, fixed and floating point Representations.

Computer Arithmetic: Addition and subtraction, multiplication Algorithms, Division Algorithms.

Error detection and correction codes.

Basic Structure of Computers

Computer Architecture in general covers three aspects of computer design namely: Computer

Hardware, Instruction set Architecture and Computer Organization.

Computer hardware consists of electronic circuits, displays, magnetic and optical storage

media and communication facilities.

Instruction set Architecture is programmer visible machine interface such as instruction set,

registers, memory organization and exception handling. Two main approaches are mainly

CISC (Complex Instruction Set Computer) and RISC (Reduced Instruction Set Computer)

Computer Organization includes the high level aspects of a design, such as memory
system, the bus structure and the design of the internal CPU.

Computer Types

Computer is a fast electronic calculating machine which accepts digital input, processes it

according to the internally stored instructions (Programs) and produces the result on the

output device. The internal operation of the computer can be as depicted in the figure below:

Figure 1: Fetch, Decode and Execute steps in a Computer System

AY:2024-25
COMPUTER ORGANIZATION

2
DEPT OF CSE

The computers can be classified into various categoriesas given below:

 Micro Computer

 Laptop Computer

 Work Station

 Super Computer

 Main Frame

 Hand Held

 Multi core

Micro Computer: A personal computer; designed to meet the computer needs of an

individual. Provides access to a wide variety of computing applications, such as word

processing, photo editing, e-mail, and internet.

Laptop Computer: A portable, compact computer that can run on power supply or a battery

unit. All components are integrated as one compact unit. It is generally more expensive than a

comparable desktop. It is also called a Notebook.

Work Station: Powerful desktop computer designed for specialized tasks. Generally used for

tasks that requires a lot of processing speed. Can also be an ordinary personal computer

attached to a LAN (local area network).

Super Computer: A computer that is considered to be fastest in the world. Used to execute

tasks that would take lot of time for other computers. For Ex: Modeling weather systems,

genome sequence, etc (Refer site: http://www.top500.org/)

Main Frame: Large expensive computer capable of simultaneously processing data for

hundreds or thousands of users. Used to store, manage, and process large amounts of data that

need to be reliable, secure, and centralized.

Hand Held: It is also called a PDA (Personal Digital Assistant). A computer that fits into a

pocket, runs on batteries, and is used while holding the unit in your hand. Typically used as

an appointment book, address book, calculator and notepad.

Multi Core: Have Multiple Cores – parallel computing platforms. Many Cores or computing

elements in a single chip. Typical Examples: Sony Play station, Core 2 Duo, i3, i7 etc.

GENERATION OF COMPUTERS

Development of technologies used to fabricate the processors, memories and I/O units of

the computers has been divided into various generations as given below:

 First generation

 Second generation

 Third generation

 Fourth generation

 Beyond the fourth generation

http://www.top500.org/)

AY:2024-25
COMPUTER ORGANIZATION

3
DEPT OF CSE

First generation:

1946 to 1955: Computers of this generation used Vacuum Tubes. The computes were built using
stored program concept. Ex: ENIAC, EDSAC, IBM 701.

Computers of this age typically used about ten thousand vacuum tubes. They were bulky in
size had slow operating speed, short life time and limited programming facilities.

Second generation:

1955 to 1965: Computers of this generation used the germanium transistors as the active

switching electronic device. Ex: IBM 7000, B5000, IBM 1401. Comparatively smaller in

size About ten times faster operating speed as compared to first generation vacuum tube

based computers. Consumed less power, had fairly good reliability. Availability of large

memory was an added advantage.

Third generation:

1965 to 1975: The computers of this generation used the Integrated Circuits as the active

electronic components. Ex: IBM system 360, PDP minicomputer etc. They were still smaller

in size. They had powerful CPUs with the capacity of executing 1 million instructions per

second (MIPS). Used to consume very less power consumption.

Fourth generation:

1976 to 1990: The computers of this generation used the LSI chips like microprocessor as

their active electronic element. HCL horizen III, and WIPRO’S Uniplus+ HCL’s Busybee

PC etc.
They used high speed microprocessor as CPU. They were more user friendly and highly reliable

systems. They had large storage capacity disk memories.

Beyond Fourth Generation:

1990 onwards: Specialized and dedicated VLSI chips are used to control specific functions
of these computers. Modern Desktop PC’s, Laptops or Notebook Computers.

AY:2024-25
COMPUTER ORGANIZATION

4
DEPT OF CSE

Each generation of computers represents a significant advancement in computing technology, resulting

in faster processing speeds, greater storage capacity, and improved functionality. The development of

computer generations has been driven by advances in technology and changes in user needs and

demands

A computer is an electronic device that manipulates information or data. It can store , retrieve, and

process.

Nowadays, a computer can be used to type documents, send an email, play games, and browse the

Web. It can also be used to edit or create spreadsheets, presentations, and even videos. But the

evolution of this complex system started around 1940 with the First Generation of computers and

evolving ever since.

The evolution of computers started around the 16th century. The evolution of the computer is the

process of which transformation of the oldest vacuum tube-based system to the current model system of

today’s computers. Long ago, the early primitive people were trailblazers in the use of counting tools,

making use of objects like sticks, stones, and bones for their counting needs. The computer we see

today has faced many changes, for the betterment via history of computers. It has continuously

improved itself in terms of speed, accuracy, size, and price to urge the form of the computer we have

today. Here we have discussed the 5 generations of computers and their characteristics... Read more at:

https://www.careerpower.in/school/computer/generation-of-computer

http://www.careerpower.in/school/computer/generation-of-computer
http://www.careerpower.in/school/computer/generation-of-computer

AY:2024-25
COMPUTER ORGANIZATION

5
DEPT OF CSE

Functional Unit

A computer in its simplest form comprises five functional units namely input unit, output unit

memory unit, arithmetic & logic unit and control unit. Figure 2 depicts the functional units of

a computer system.

Figure 2: Basic functional units of a computer

Let us discuss about each of them in brief:

1. Input Unit: Computer accepts encoded information through input unit. The

standard input device is a keyboard. Whenever a key is pressed, keyboard

controller sends the code to CPU/Memory.

Examples include Mouse, Joystick, Tracker ball, Light pen, Digitizer, Scanner etc.

2. Memory Unit: Memory unit stores the program instructions (Code), data

and results of computations etc. Memory unit is classified as:

 Primary /Main Memory

 Secondary /Auxiliary Memory

AY:2024-25
COMPUTER ORGANIZATION

6
DEPT OF CSE

Primary memory is a semiconductor memory that provides access at high speed.

Run time program instructions and operands are stored in the main memory. Main

memory is classified again as ROM and RAM. ROM holds system programs and

firmware routines such as BIOS, POST, I/O Drivers that are essential to manage the

hardware of a computer. RAM is termed as Read/Write memory or user memory that

holds run time program instruction and data. While primary storage is essential, it is

volatile in nature and expensive. Additional requirement of memory could be supplied

as auxiliary memory at cheaper cost. Secondary memories are non volatile in nature.

3. Arithmetic and logic unit: ALU consist of necessary logic circuits like adder,

comparator etc., to perform operations of addition, multiplication, comparison of two

numbers etc.

4. Output Unit: Computer after computation returns the computed results, error

messages, etc. via output unit. The standard output device is a video monitor,

LCD/TFT monitor. Other output devices are printers, plotters etc.

5. Control Unit: Control unit co-ordinates activities of all units by issuing control

signals. Control signals issued by control unit govern the data transfers and then

appropriate operations take place. Control unit interprets or decides the

operation/action to be performed.

The operations of a computer can be summarized as follows:

1. A set of instructions called a program reside in the main memory of computer.

2. The CPU fetches those instructions sequentially one-by-one from the main memory,

decodes them and performs the specified operation on associated data operands in

ALU.

3. Processed data and results will be displayed on an output unit.

4. All activities pertaining to processing and data movement inside the computer

machine are governed by control unit.

AY:2024-25
COMPUTER ORGANIZATION

7
DEPT OF CSE

Basic Operational Concepts

An Instruction consists of two parts, an Operation code and operand/s as shown below:

Let us see a typical instruction
ADD LOCA, R0

This instruction is an addition operation. The following are the steps to execute the

instruction: Step 1: Fetch the instruction from main memory into the processor

Step 2: Fetch the operand at location LOCA from main memory into the processor

Step 3: Add the memory operand (i.e. fetched contents of LOCA) to the contents of register

R0 Step 4: Store the result (sum) in R0.

The same instruction can be realized using two instructions as

Load LOCA,

R1 Add R1,

R0

The steps to execute the instructions can be enumerated as below:

Step 1: Fetch the instruction from main memory into the processor

Step 2: Fetch the operand at location LOCA from main memory into

the processor Register R1

Step 3: Add the content of Register R1 and the contents of register

R0 Step 4: Store the result (sum) in R0.

Figure 3 below shows how the memory and the processor are connected. As shown in the

diagram, in addition to the ALU and the control circuitry, the processor contains a number of

registers used for several different purposes. The instruction register holds the instruction that

is currently being executed. The program counter keeps track of the execution of the program.

It contains the memory address of the next instruction to be fetched and executed. There are n

general purpose registers R0 to Rn-1 which can be used by the programmers during writing

programs.

OPERAND/s OPCODE

AY:2024-25
COMPUTER ORGANIZATION

8
DEPT OF CSE

Figure 3: Connections between the processor and the memory

The interaction between the processor and the memory and the direction of flow of

information is as shown in the diagram below:

Figure 4: Interaction between the memory and the ALU

AY:2024-25
COMPUTER ORGANIZATION

9
DEPT OF CSE

BUS STRUCTURES

Group of lines that serve as connecting path for several devices is called a bus (one bit per

line). Individual parts must communicate over a communication line or path for exchanging

data, address and control information as shown in the diagram below. Printer example –

processor to printer. A common approach is to use the concept of buffer registers to hold the

content during the transfer.

Figure 5: Single bus structure

SOFTWARE

If a user wants to enter and run an application program, he/she needs a System Software.

System Software is a collection of programs that are executed as needed to perform functions

such as:

 Receiving and interpreting user commands

 Entering and editing application programs and storing then as files in secondary
storage devices

 Running standard application programs such as word processors, spread sheets,
games etc…

Operating system - is key system software component which helps the user to exploit the
below underlying hardware with the programs.

USER PROGRAM and OS ROUTINE INTERACTION

Let’s assume computer with 1 processor, 1 disk and 1 printer and application program is in

machine code on disk. The various tasks are performed in a coordinated fashion, which is

called multitasking. t0, t1 …t5 are the instances of time and the interaction during various

instances as given below:

t0: the OS loads the program from the disk to
memory t1: program executes

t2: program accesses disk

t3: program executes some

more t4: program accesses

printer

t5: program terminates

COMPUTER ORGANIZATION AY:2024-25

10
DEPT OF CSE

Figure 6 :User program and OS routine sharing of the processor

PERFORMANCE

The most important measure of the performance of a computer is how quickly it

can execute programs. The speed with which a computer executes program is affected

by the design of its hardware. For best performance, it is necessary to design the

compiles, the machine instruction set, and the hardware in a coordinated way.

The total time required to execute the program is elapsed time is a measure of

the performance of the entire computer system. It is affected by the speed of the

processor, the disk and the printer. The time needed to execute a instruction is called the

processor time.

Just as the elapsed time for the execution of a program depends on all units in a

computer system, the processor time depends on the hardware involved in the execution

of individual machine instructions. This hardware comprises the processor and the

memory which are usually connected by the bus.

The pertinent parts of the fig. c is repeated in fig. d which includes the cache

memory as part of the processor unit.

Let us examine the flow of program instructions and data between the memory

and the processor. At the start of execution, all program instructions and the required

data are stored in the main memory. As the execution proceeds, instructions are fetched

one by one over the bus into the processor, and a copy is placed in the cache later if the

same instruction or data item is needed a second time, it is read directly from the cache.

The processor and relatively small cache memory can be fabricated on a single IC chip.

The internal speed of performing the basic steps of instruction processing on chip is

very high and is considerably faster than the speed at which the instruction and data can

be fetched from the main memory. A program will be executed faster if the movement

of instructions and data between the main memory and the processor is minimized,

which is achieved by using the cache.

COMPUTER ORGANIZATION AY:2024-25

11
DEPT OF CSE

For example:- Suppose a number of instructions are executed repeatedly over a short

period of time as happens in a program loop. If these instructions are available in the

cache, they can be fetched quickly during the period of repeated use. The same applies

to the data that are used repeatedly.

Processor clock:

Processor circuits are controlled by a timing signal called clock. The clock designer the

regular time intervals called clock cycles. To execute a machine instruction the

processor divides the action to be performed into a sequence of basic steps that each step

can be completed in one clock cycle. The length P of one clock cycle is an important

parameter that affects the processor performance.

Processor used in today’s personal computer and work station have a clock rates that

range from a few hundred million to over a billion cycles per second.

Basic performance equation:

We now focus our attention on the processor time component of the total elapsed time.

Let ‘T’ be the processor time required to execute a program that has been prepared

in some high-level language. The compiler generates a machine language object

program that corresponds to the source program. Assume that complete execution of the

program requires the execution of N machine cycle language instructions. The number

N is the actual number of instruction execution and is not necessarily equal to the

number of machine cycle instructions in the object program. Some instruction may be

executed more than once, which in the case for instructions inside a program loop others

may not be executed all, depending on the input data used.

Suppose that the average number of basic steps needed to execute one machine

cycle instruction is S, where each basic step is completed in one clock cycle. If clock

rate is ‘R’ cycles per second, the program execution time is given by

T=N*S/R

this is often referred to as the basic performance equation.

We must emphasize that N, S & R are not independent parameters changing one may

affect another. Introducing a new feature in the design of a processor will lead to

improved performance only if the overall result is to reduce the value of T.

Performance measurements:

It is very important to be able to access the performance of a computer, comp designers

use performance estimates to evaluate the effectiveness of new features.
The previous argument suggests that the performance of a computer is given by the
execution time T, for the program of interest.

Inspite of the performance equation being so simple, the evaluation of ‘T’ is highly

complex. Moreover the parameters like the clock speed and various architectural

features are not reliable indicators of the expected performance.

Hence measurement of computer performance using bench mark programs is done to

make comparisons possible, standardized programs must be used.

The performance measure is the time taken by the computer to execute a given bench

mark. Initially some attempts were made to create artificial programs that could be used

COMPUTER ORGANIZATION AY:2024-25

12
DEPT OF CSE

as bench mark programs. But synthetic programs do not properly predict the
performance obtained when real application programs are run.

A non profit organization called SPEC- system performance evaluation corporation

selects and publishes bench marks.

The program selected range from game playing, compiler, and data base applications to

numerically intensive programs in astrophysics and quantum chemistry. In each case,

the program is compiled under test, and the running time on a real computer is

measured. The same program is also compiled and run on one computer selected as

reference.

The ‘SPEC’ rating is computed as follows.

Running time on the reference computer

SPEC rating =

Running time on the computer under test

If the SPEC rating = 50

Multiprocessor & microprocessors:

Large computers that contain a number of processor units are called multiprocessor

system. These systems either execute a number of different application tasks in parallel

or execute subtasks of a single large task in parallel. All processors usually have access

to all memory locations in such system & hence they are called shared memory

multiprocessor systems. The high performance of these systems comes with much

increased complexity and cost. In contrast to multiprocessor systems, it is also possible

to use an interconnected group of complete computers to achieve high total

computational power. These computers normally have access to their own memory units

when the tasks they are executing need to communicate data they do so by exchanging

messages over a communication network. This properly distinguishes them from shared

memory multiprocessors, leading to name message-passing multi computer.

Data Representation:

Information that a Computer is dealing with

Data

Numeric Data

Numbers(Integer, real)

Non-numeric Data

Letters, Symbols

Relationship between data elements

Data Structures

Linear Lists, Trees, Rings, etc

Program(Instruction)

COMPUTER ORGANIZATION AY:2024-25

13
DEPT OF CSE

Numeric Data Representation

Fixed Point

Representation:

It’s the representation for integers only where the decimal point is always fixed. i.e at

the end of rightmost point. it can be again represented in two ways.

1. Sign and Magnitude Representation

In this system, he most significant (leftmost) bit in the word as a sign bit. If the sign bit

is 0, the number is positive; if the sign bit is 1, the number is negative.

The simplest form of representing sign bit is the sign magnitude representation.

One of the draw back for sign magnitude number is addition and subtraction need to

consider both sign of the numbers and their relative magnitude.

Another drawback is there are two representation for 0(Zero) i.e +0 and -0.

2. One’s Complement (1’s) Representation

In this representation negative values are obtained by complementing each bit of the

corresponding positive number.

For example 1s complement of 0101 is 1010 . The process of forming the 1s

complement of a given number is equivalent to subtracting that number from 2n -1 i.e

from 1111 for 4 bit number.

Two’s Complement (2’s) Representation Forming the 2s complement of a number is

done by subtracting that number from 2n . So 2s complement of a number is obtained

by adding 1 to 1s complement of that number.

Ex: 2’s complement of 0101 is 1010 +1 = 1011

Decimal Binary Octal Hexadecimal

00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 05 5

06 0110 06 6

07 0111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

COMPUTER ORGANIZATION AY:2024-25

14
DEPT OF CSE

NB: In all systems, the leftmost bit is 0 for positive number and 1 for negative number.

Floating-point representation

Floating-point numbers are so called as the decimal or binary point floats over the base
depending on the exponent value.

It consists two components.

• Exponent

• Mantissa

Example: Avogadro's number can be written as 6.02x1023 in base 10. And the mantissa

and exponent are 6.02 and 1023 respctivly. But computer floating-point numbers are

usually based on base two. So 6.02x1023 is approximately (1 and 63/64)x278 or

1.111111 (base two) x 21001110 (base two)

Error Detection Codes

Parity System

Hamming Distance

CRC

Check sum

COMPUTER ORGANIZATION AY:2024-25

15
DEPT OF CSE

UNIT 2

Syllabus:

Register Transfer Language and Micro Operations: RTL- Registers, Register transfers,

Bus and memory transfers. Micro operations: Arithmetic, Logic, and Shift micro

operations, Arithmetic logic shift unit.

Basic Computer Organization and Design: Computer Registers, Computer instructions,

Instruction cycle. Instruction codes, Timing and Control, Types of Instructions: Memory

Reference Instructions, Input – Output and Interrupt, Complete Computer Description.

Register Transfer Language And Micro Operations:

Register Transfer language:

 Digital systems are composed of modules that are constructed from digital
components, such as registers, decoders, arithmetic elements, and control logic

 The modules are interconnected with common data and control paths to form a
digital computer system

 The operations executed on data stored in registers are called microoperations

 A microoperation is an elementary operation performed on the information
stored in one or more registers

 Examples are shift, count, clear, and load

 Some of the digital components from before are registers that implement
microoperations

 The internal hardware organization of a digital computer is best defined by
specifying

o The set of registers it contains and their functions
o The sequence of microoperations performed on the binary information

stored
o The control that initiates the sequence of microoperations

 Use symbols, rather than words, to specify the sequence of microoperations

 The symbolic notation used is called a register transfer language

 A programming language is a procedure for writing symbols to specify a given
computational process

 Define symbols for various types of microoperations and describe associated
hardware that can implement the microoperations

Register Transfer

 Designate computer registers by capital letters to denote its function

 The register that holds an address for the memory unit is called MAR

 The program counter register is called PC

 IR is the instruction register and R1 is a processor register

 The individual flip-flops in an n-bit register are numbered in sequence from 0 to

n-1

 Refer to Figure 4.1 for the different representations of a register

COMPUTER ORGANIZATION AY:2024-25

16
DEPT OF CSE

 Designate information transfer from one register to

another by R2 R1

 This statement implies that the hardware is available

o The outputs of the source must have a path to the inputs of the
destination

o The destination register has a parallel load capability

 If the transfer is to occur only under a predetermined control condition,

designate it by
If (P = 1) then (R2 R1)

or
P: R2 R1,

where P is a control function that can be either 0 or 1

 Every statement written in register transfer notation implies the
presence of the required hardware construction

AY:2024-25 COMPUTER ORGANIZATION

17 DEPT OF CSE

 It is assumed that all transfers occur during a clock edge transition

 All microoperations written on a single line are to be executed at the same time T:
R2 R1, R1 R2

Bus and Memory Transfers

 Rather than connecting wires between all registers, a common bus is used

 A bus structure consists of a set of common lines, one for each bit of a register

 Control signals determine which register is selected by the bus during each
transfer

 Multiplexers can be used to construct a common bus

AY:2024-25 COMPUTER ORGANIZATION

18 DEPT OF CSE

 Multiplexers select the source register whose binary information is then placed on the
bus

 The select lines are connected to the selection inputs of the multiplexers and

choose the bits of one register

 In general, a bys system will multiplex k registers of n bits each to produce an n-
line common bus

 This requires n multiplexers – one for each bit

 The size of each multiplexer must be k x 1

 The number of select lines required is log k

 To transfer information from the bus to a register, the bus lines are connected to the

inputs of all destination registers and the corresponding load control line must be

activated

 Rather than listing each step as

BUS C, R1 BUS,

use R1 C, since the bus is implied

 Instead of using multiplexers, three-state gates can be used to construct the bus

system

 A three-state gate is a digital circuit that exhibits three states

 Two of the states are signals equivalent to logic 1 and 0

 The third state is a high-impedance state – this behaves like an open circuit, which

means the output is disconnected and does not have a logic significance

AY:2024-25 COMPUTER ORGANIZATION

19 DEPT OF CSE

 The three-state buffer gate has a normal input and a control input which

determines the output state

 With control 1, the output equals the normal input

 With control 0, the gate goes to a high-impedance state

 This enables a large number of three-state gate outputs to be connected with wires to
form a common bus line without endangering loading effects

 Decoders are used to ensure that no more than one control input is active at any

given time

 This circuit can replace the multiplexer in Figure 4.3

 To construct a common bus for four registers of n bits each using three-state
buffers, we need n circuits with four buffers in each

 Only one decoder is necessary to select between the four registers

 Designate a memory word by the letter M

 It is necessary to specify the address of M when writing memory transfer
operations

 Designate the address register by AR and the data register by DR

 The read operation can be stated as: Read: DR M[AR]

 The write operation can be stated as:
Write: M[AR] R1

AY:2024-25 COMPUTER ORGANIZATION

20 DEPT OF CSE

Arithmetic Microoperations

 There are four categories of the most common microoperations:

o Register transfer: transfer binary information from one register to another
o Arithmetic: perform arithmetic operations on numeric data stored in

registers

o Logic: perform bit manipulation operations on non-numeric data stored in
registers

o Shift: perform shift operations on data stored in registers

 The basic arithmetic microoperations are addition, subtraction, increment,
decrement, and shift

 Example of addition: R3 R1 +R2

 Subtraction is most often implemented through complementation and addition

 Example of subtraction: R3 R1 + R2 + 1 (strikethrough denotes bar on top – 1’s

complement of R2)

 Adding 1 to the 1’s complement produces the 2’s complement

 Adding the contents of R1 to the 2’s complement of R2 is equivalent to
subtracting

 Multiply and divide are not included as microoperations

 A microoperation is one that can be executed by one clock pulse

 Multiply (divide) is implemented by a sequence of add and shift microoperations

(subtract and shift)

 To implement the add microoperation with hardware, we need the registers that

hold the data and the digital component that performs the addition

 A full-adder adds two bits and a previous carry

AY:2024-25 COMPUTER ORGANIZATION

21 DEPT OF CSE

 A binary adder is a digital circuit that generates the arithmetic sum of two binary
numbers of any length

 A binary added is constructed with full-adder circuits connected in cascade

 An n-bit binary adder requires n full-adders

 The subtraction A-B can be carried out by the following steps

o Take the 1’s complement of B (invert each bit)

o Get the 2’s complement by adding 1
o Add the result to A

 The addition and subtraction operations can be combined into one common circuit by
including an XOR gate with each full-adder

 The increment microoperation adds one to a number in a register

 This can be implemented by using a binary counter – every time the count enable is
active, the count is incremented by one

 If the increment is to be performed independent of a particular register, then use

half-adders connected in cascade

 An n-bit binary incrementer requires n half-adders

AY:2024-25 COMPUTER ORGANIZATION

22 DEPT OF CSE

 Each of the arithmetic microoperations can be implemented in one composite
arithmetic circuit

 The basic component is the parallel adder

 Multiplexers are used to choose between the different operations

 The output of the binary adder is calculated from the following sum: D =

A + Y + Cin

AY:2024-25 COMPUTER ORGANIZATION

23 DEPT OF CSE

Logic Microoperations

 Logic operations specify binary operations for strings of bits stored in registers and
treat each bit separately

 Example: the XOR of R1 and R2 is symbolized by

P: R1 R1 ⊕R2

 Example: R1 = 1010 and R2 = 1100
1010 Content of R1

1100 Content of R2
0110 Content of R1 after P = 1

 Symbols used for logical microoperations:

o OR:

o AND:

o XOR: ⊕

 The + sign has two different meanings: logical OR and summation

 When + is in a microoperation, then summation

 When + is in a control function, then OR

 Example:

P + Q: R1 R2 + R3, R4 R5 R6

 There are 16 different logic operations that can be performed with two binary

variables

AY:2024-25 COMPUTER ORGANIZATION

24 DEPT OF CSE

 The hardware implementation of logic microoperations requires that logic gates be
inserted for each bit or pair of bits in the registers

 All 16 microoperations can be derived from using four logic gates

AY:2024-25 COMPUTER ORGANIZATION

25 DEPT OF CSE

 Logic microoperations can be used to change bit values, delete a group of bits, or
insert new bit values into a register

 The selective-set operation sets to 1 the bits in A where there are corresponding 1’s
in B

1010 A before

1100 B (logic operand)
1110 A after

A A B

 The selective-complement operation complements bits in A where there are

corresponding 1’s in B

1010 A before

1100 B (logic operand)

0110 A after

A A ⊕B

 The selective-clear operation clears to 0 the bits in A only where there are

corresponding 1’s in B

1010 A before

1100 B (logic operand)

0010 A after

A A B

 The mask operation is similar to the selective-clear operation, except that the bits of

A are cleared only where there are corresponding 0’s in B

1010 A before
1100 B (logic operand)

1000 A after
A A B

AY:2024-25 COMPUTER ORGANIZATION

26 DEPT OF CSE

 The insert operation inserts a new value into a group of bits

 This is done by first masking the bits to be replaced and then Oring them with the bits
to be inserted

0110 1010 A before

0000 1111 B (mask)

0000 1010 A after masking

0000 1010 A before

1001 0000 B (insert)
1001 1010 A after insertion

 The clear operation compares the bits in A and B and produces an all 0’s result if the

two number are equal
1010 A

1010 B

0000 A A ⊕B

Shift Microoperations

 Shift microoperations are used for serial transfer of data

 They are also used in conjunction with arithmetic, logic, and other data-

processing operations

 There are three types of shifts: logical, circular, and arithmetic

 A logical shift is one that transfers 0 through the serial input

 The symbols shl and shr are for logical shift-left and shift-right by one position R1
shl R1

 The circular shift (aka rotate) circulates the bits of the register around the two
ends without loss of information

 The symbols cil and cir are for circular shift left and right

 The arithmetic shift shifts a signed binary number to the left or right

 To the left is multiplying by 2, to the right is dividing by 2

 Arithmetic shifts must leave the sign bit unchanged

 A sign reversal occurs if the bit in Rn-1 changes in value after the shift

 This happens if the multiplication causes an overflow

 An overflow flip-flop Vs can be used to detect the overflow Vs

 = Rn-1 ⊕Rn-2

AY:2024-25 COMPUTER ORGANIZATION

27 DEPT OF CSE

 A bi-directional shift unit with parallel load could be used to implement this

 Two clock pulses are necessary with this configuration: one to load the value and
another to shift

 In a processor unit with many registers it is more efficient to implement the shift
operation with a combinational circuit

 The content of a register to be shifted is first placed onto a common bus and the output

is connected to the combinational shifter, the shifted number is then loaded back into

the register

 This can be constructed with multiplexers

Arithmetic Logic Shift Unit

 The arithmetic logic unit (ALU) is a common operational unit connected to a
number of storage registers

 To perform a microoperation, the contents of specified registers are placed in the
inputs of the ALU

 The ALU performs an operation and the result is then transferred to a destination
register

 The ALU is a combinational circuit so that the entire register transfer operation from

the source registers through the ALU and into the destination register can be

performed during one clock pulse period

AY:2024-25 COMPUTER ORGANIZATION

28 DEPT OF CSE

AY:2024-25 COMPUTER ORGANIZATION

29 DEPT OF CSE

Basic Computer Organization and Design

Instruction codes. Computer Registers Computer instructions, Timing and Control, Instruction

cycle. Memory Reference Instructions, Input – Output and Interrupt, Complete Computer

Description.

Micro Programmed Control: Control memory, Address sequencing, micro program example,

design of control unit, micro Programmed control

--

Instruction Formats:

A computer will usually have a variety of instruction code formats. It is the function

of the control unit within the CPU to interpret each instruction code and provide the

necessary control functions needed to process the instruction.

The format of an instruction is usually depicted in a rectangular box symbolizing the

bits of the instruction as they appear in memory words or in a control register. The bits of

the instruction are divided into groups called fields. The most common fields found in

instruction formats are:

1 An operation code field that specifies the operation to be performed.

2. An address field that designates a memory address or a processor registers.

3. A mode field that specifies the way the operand or the effective address is

determined.

Other special fields are sometimes employed under certain circumstances, as for

example a field that gives the number of shifts in a shift-type instruction.

The operation code field of an instruction is a group of bits that define various

processor operations, such as add, subtract, complement, and shift. The bits that define the

AY:2024-25 COMPUTER ORGANIZATION

30 DEPT OF CSE

mode field of an instruction code specify a variety of alternatives for choosing the operands

from the given address.

Operations specified by computer instructions are executed on some data stored in

memory or processor registers, Operands residing in processor registers are specified with a

register address. A register address is a binary number of k bits that defines one of 2k

registers in the CPU. Thus a CPU with 16 processor registers R0 through R15 will have a

register address field of four bits. The binary number 0101, for example, will designate

register R5.

Computers may have instructions of several different lengths containing varying

number of addresses. The number of address fields in the instruction format of a computer

depends on the internal organization of its registers. Most computers fall into one of three

types of CPU organizations:

1 Single accumulator organization.

2 General register organization.

3 Stack organization.

All operations are performed with an implied accumulator register. The instruction

format in this type of computer uses one address field. For example, the instruction that

specifies an arithmetic addition is defined by an assembly language instruction as ADD.

Where X is the address of the operand. The ADD instruction in this case results in the

operation AC ← AC + M[X]. AC is the accumulator register and M[X] symbolizes the

memory word located at address X.

An example of a general register type of organization was presented in Fig. 7.1. The

instruction format in this type of computer needs three register address fields. Thus the

instruction for an arithmetic addition may be written in an assembly language as

ADD R1, R2, R3

To denote the operation R1 ← R2 + R3. The number of address fields in the

instruction can be reduced from three to two if the destination register is the same as one of

the source registers. Thus the instruction

ADD R1, R2

Would denote the operation R1 ← R1 + R2. Only register addresses for R1 and R2

need be specified in this instruction.

Computers with multiple processor registers use the move instruction with a

mnemonic MOV to symbolize a transfer instruction. Thus the instruction

AY:2024-25 COMPUTER ORGANIZATION

31 DEPT OF CSE

MOV R1, R2

Denotes the transfer R1 ← R2 (or R2 ← R1, depending on the particular computer).

Thus transfer-type instructions need two address fields to specify the source and the

destination.

General register-type computers employ two or three address fields in their

instruction format. Each address field may specify a processor register or a memory word.

An instruction symbolized by

ADD R1, X

Would specify the operation R1 ← R + M [X]. It has two address fields, one for

register R1 and the other for the memory address X.

The stack-organized CPU was presented in Fig. 8-4. Computers with stack

organization would have PUSH and POP instructions which require an address field. Thus

the instruction

PUSH X

Will push the word at address X to the top of the stack. The stack pointer is updated

automatically. Operation-type instructions do not need an address field in stack-organized

computers. This is because the operation is performed on the two items that are on top of

the stack. The instruction ADD in a stack computer consists of an operation code only with

no address field. This operation has the effect of popping the two top numbers from the

stack, adding the numbers, and pushing the sum into the stack. There is no need to specify

operands with an address field since all operands are implied to be in the stack.

To illustrate the influence of the number of addresses on computer programs, we will

evaluate the arithmetic statement X = (A + B) ∗ (C + D).

Using zero, one, two, or three address instruction. We will use the symbols ADD,

SUB, MUL, and DIV for the four arithmetic operations; MOV for the transfer-type

operation; and LOAD and STORE for transfers to and from memory and AC register. We

will assume that the operands are in memory addresses A, B, C, and D, and the result must

be stored in memory at address X.

Three-Address Instructions

Computers with three-address instruction formats can use each address field to

specify either a processor register or a memory operand. The program in assembly

language that evaluates X = (A + B) ∗ (C + D) is shown below, together with comments

that explain the register transfer operation of each instruction.

AY:2024-25 COMPUTER ORGANIZATION

32 DEPT OF CSE

ADD

R1, A, B

R1 ← M [A] + M [B]

ADD R2, C, D R2 ← M [C] + M [D]

MUL X, R1, R2 M [X] ← R1 ∗ R2

It is assumed that the computer has two processor registers, R1 and R2. The symbol M [A]
denotes the operand at memory address symbolized by A.

The advantage of the three-address format is that it results in short programs when

evaluating arithmetic expressions. The disadvantage is that the binary-coded instructions

require too many bits to specify three addresses. An example of a commercial computer

that uses three-address instructions is the Cyber 170. The instruction formats in the Cyber

computer are restricted to either three register address fields or two register address fields

and one memory address field.

Two-Address Instructions

Two address instructions are the most common in commercial computers. Here again each

address field can specify either a processor register or a memory word. The program to

evaluate X = (A + B) ∗ (C + D) is as follows:

MOV R1, A R1 ← M [A]

ADD R1, B R1 ← R1 + M [B]

MOV R2, C R2 ← M [C]

ADD R2, D R2 ← R2 + M [D]

MUL R1, R2 R1 ← R1∗ R2

MOV X, R1 M [X] ← R1

The MOV instruction moves or transfers the operands to and from memory and

processor registers. The first symbol listed in an instruction is assumed to be both a source

and the destination where the result of the operation is transferred.

One-Address Instructions

One-address instructions use an implied accumulator (AC) register for all data

manipulation. For multiplication and division there is a need for a second register.

However, here we will neglect the second and assume that the AC contains the result of tall

operations. The program to evaluate X = (A + B) ∗ (C + D) is

LOAD A AC ← M [A]

ADD B AC ← A [C] + M [B]

STORE T M [T] ← AC

LOAD C AC ← M [C]

ADD D AC ← AC + M [D]

AY:2024-25 COMPUTER ORGANIZATION

33 DEPT OF CSE

MUL

T

AC ← AC ∗ M [T]

STORE X M [X] ← AC

All operations are done between the AC register and a memory operand. T is the

address of a temporary memory location required for storing the intermediate result.

Zero-Address Instructions

A stack-organized computer does not use an address field for the instructions ADD

and MUL. The PUSH and POP instructions, however, need an address field to specify the

operand that communicates with the stack. The following program shows how X = (A + B)

∗ (C + D) will be written for a stack organized computer. (TOS stands for top of stack)

PUSH A TOS ← A

PUSH B TOS ← B

ADD

PUSH

C

TOS ← (A + B)

TOS ← C

PUSH D TOS ← D

ADD TOS ← (C + D)

MUL

POP

X

TOS ← (C + D) ∗ (A + B)

M [X] ← TOS

To evaluate arithmetic expressions in a stack computer, it is necessary to convert the

expression into reverse Polish notation. The name “zero-address” is given to this type of

computer because of the absence of an address field in the computational instructions.

Instruction Codes

A set of instructions that specify the operations, operands, and the sequence by which

processing has to occur. An instruction code is a group of bits that tells the computer to perform

a specific operation part.

Format of Instruction

The format of an instruction is depicted in a rectangular box symbolizing the bits of an

instruction. Basic fields of an instruction format are given below:

1. An operation code field that specifies the operation to be performed.

2. An address field that designates the memory address or register.

3. A mode field that specifies the way the operand of effective address is determined.

Computers may have instructions of different lengths containing varying number of addresses.

The number of address field in the instruction format depends upon the internal organization of

its registers.

AY:2024-25 COMPUTER ORGANIZATION

DEPT OF CSE

Addressing Modes

To understand the various addressing modes to be presented in this section, it is imperative

that we understand the basic operation cycle of the computer. The control unit of a computer

is designed to go through an instruction cycle that is divided into three major phases:

1. Fetch the instruction from memory

2. Decode the instruction.

3. Execute the instruction.

There is one register in the computer called the program counter of PC that keeps track of

the instructions in the program stored in memory. PC holds the address of the instruction to be

executed next and is incremented each time an instruction is fetched from memory. The

decoding done in step 2 determines the operation to be performed, the addressing mode of the

instruction and the location of the operands. The computer then executes the instruction and

returns to step 1 to fetch the next instruction in sequence.

In some computers the addressing mode of the instruction is specified with a distinct

binary code, just like the operation code is specified. Other computers use a single binary

code that designates both the operation and the mode of the instruction. Instructions may be

defined with a variety of addressing modes, and sometimes, two or more addressing modes

are combined in one instruction.

1. The operation code specified the operation to be performed. The mode field is

sued to locate the operands needed for the operation. There may or may not be an address

field in the instruction. If there is an address field, it may designate a memory address or a

processor register. Moreover, as discussed in the preceding section, the instruction may

have more than one address field, and each address field may be associated with its own

particular addressing mode.

Although most addressing modes modify the address field of the instruction, there are

two modes that need no address field at all. These are the implied and immediate modes.

1 Implied Mode: In this mode the operands are specified implicitly in the definition

of the instruction. For example, the instruction “complement accumulator” is an implied-

mode instruction because the operand in the accumulator register is implied in the

definition of the instruction. In fact, all register reference instructions that sue an

accumulator are implied-mode instructions.

Op code Mod
e

Addre
ss

Figure 1: Instruction format with mode field

Zero-address instructions in a stack-organized computer are implied-mode 34

AY:2024-25 COMPUTER ORGANIZATION

35 DEPT OF CSE

instructions since the operands are implied to be on top of the stack.

2 Immediate Mode: In this mode the operand is specified in the instruction itself.

Inother words, an immediate- mode instruction has an operand field rather than an address

field. The operand field contains the actual operand to be used in conjunction with the

operation specified in the instruction. Immediate-mode instructions are useful for

initializing registers to a constant value.

It was mentioned previously that the address field of an instruction may specify either

a memory word or a processor register. When the address field specifies a processor

register, the instruction is said to be in the register mode.

3 Register Mode: In this mode the operands are in registers that reside within the

CPU.The particular register is selected from a register field in the instruction. A k-bit field

can specify any one of 2k registers.

4 Register Indirect Mode: In this mode the instruction specifies a register in the

CPUwhose contents give the address of the operand in memory. In other words, the

selected register contains the address of the operand rather than the operand itself. Before

using a register indirect mode instruction, the programmer must ensure that the memory

address fo the operand is placed in the processor register with a previous instruction. A

reference to the register is then equivalent to specifying a memory address. The advantage

of a register indirect mode instruction is that the address field of the instruction sues fewer

bits to select a register than would have been required to specify a memory address

directly.

5 Auto increment or Auto decrement Mode: This is similar to the register indirect

modeexcept that the register is incremented or decremented after (or before) its value is

used to access memory. When the address stored in the register refers to a table of data in

memory, it is necessary to increment or decrement the register after every access to the

table. This can be achieved by using the increment or decrement instruction. However,

because it is such a common requirement, some computers incorporate a special mode that

automatically increments or decrements the content of the register after data access.

The address field of an instruction is used by the control unit in the CPU to obtain the

operand from memory. Sometimes the value given in the address field is the address of the

operand, but sometimes it is just an address from which the address of the operand is

calculated. To differentiate among the various addressing modes it is necessary to

distinguish between the address part of the instruction and the effective address used by the

AY:2024-25 COMPUTER ORGANIZATION

36 DEPT OF CSE

control when executing the instruction. The effective address is defined to be the memory

address obtained from the computation dictated by the given addressing mode. The

effective address is the address of the operand in a computational-type instruction. It is the

address where control branches in response to a branch-type instruction. We have already

defined two addressing modes in previous chapter.

6 Direct Address Mode: In this mode the effective address is equal to the address part

ofthe instruction. The operand resides in memory and its address is given directly by the

address field of the instruction. In a branch-type instruction the address field specifies the

actual branch address.

7 Indirect Address Mode: In this mode the address field of the instruction gives theaddress

where the effective address is stored in memory. Control fetches the instruction from

memory and uses its address part to access memory again to read the effective address.

8 Relative Address Mode: In this mode the content of the program counter is added to

theaddress part of the instruction in order to obtain the effective address. The address part

of the instruction is usually a signed number (in 2’s complement representation) which

can be either positive or negative. When this number is added to the content of the

program counter, the result produces an effective address whose position in memory is

relative to the address of the next instruction. To clarify with an example, assume that the

program counter contains the number 825 and the address part of the instruction contains

the number 24. The instruction at location 825 is read from memory during the fetch

phase and the program counter is then incremented by one to 826 + 24 = 850. This is 24

memory locations forward from the address of the next instruction. Relative addressing is

often used with branch-type instructions when the branch address is in the area

surrounding the instruction word itself. It results in a shorter address field in the

instruction format since the relative address can be specified with a smaller number of bits

compared to the number of bits required to designate the entire memory address.

9 Indexed Addressing Mode: In this mode the content of an index register is added to

theaddress part of the instruction to obtain the effective address. The index register is a

special CPU register that contains an index value. The address field of the instruction

defines the beginning address of a data array in memory. Each operand in the array is

stored in memory relative to the beginning address. The distance between the beginning

address and the address of the operand is the index value stores in the index register.

Any operand in the array can be accessed with the same instruction provided that the

AY:2024-25 COMPUTER ORGANIZATION

37 DEPT OF CSE

index register contains the correct index value. The index register can be incremented to

facilitate access to consecutive operands. Note that if an index-type instruction does not

include an address field in its format, the instructionconverts to the register indirect

mode of operation. Some computers dedicate one CPU register to function solely as an

index register. This register is involved implicitly when the index-mode instruction is

used. In computers with many processor registers, any one of the CPU registers can

contain the index number. In such a case the register must be specified explicitly in a

register field within the instruction format.

10 Base Register Addressing Mode: In this mode the content of a base register is

added tothe address part of the instruction to obtain the effective address. This is similar

to the indexed addressing mode except that the register is now called a base register

instead of an index register. The difference between the two modes is in the way they

are used rather than in the way that they are computed. An index register is assumed to

hold an index number that is relative to the address part of the instruction. A base

register is assumed to hold a base address and the address field of the instruction gives a

displacement relative to this base address. The base register addressing mode is used in

computers to facilitate the relocation of programs in memory. When programs and data

are moved from one segment of memory to another, as required in multiprogramming

systems, the address values of the base register requires updating to reflect the

beginning of a new memory segment.

Numerical Example

AY:2024-25 COMPUTER ORGANIZATION

38 DEPT OF CSE

Computer Registers

 Data Register(DR) : hold the operand(Data) read from memory

 Accumulator Register(AC) : general purpose processing register

 Instruction Register(IR) : hold the instruction read frommemory

 Temporary Register(TR) : hold a temporary data during processing

 Address Register(AR) : hold a memory address, 12 bit width

 Program Counter(PC) :

»hold the address of the next instruction to be read frommemory after the current
instruction is executed
»Instruction words are read and executed in sequence unless a branch instruction is
encountered
»A branch instruction calls for a transfer to a nonconsecutive instruction in the
program
»The address part of a branch instruction is transferred to PCto become the address of
the next instruction
Input Register(INPR) : receive an 8-bit character from an input device

 Output Register(OUTR) : hold an 8-bit character for an output device
The following registers are used in Mano’s example computer.

AY:2024-25 COMPUTER ORGANIZATION

39 DEPT OF CSE

Register Number Register Register

symbol of bits name Function

DR 16 Data register Holds memory operands

AR 12 Address register Holds address for memory

AC 16 Accumulator Processor register

IR 16 Instruction register Holds instruction code

PC 12 Program counter Holds address of instruction

TR 16 Temporary register Holds temporary data

INPR 8 Input register Holds input character

OUTR 8 Output register Holds output character

Computer Instructions:

The basic computer has 16 bit instruction register (IR) which can denote either memory
reference or register reference or input-output instruction.

1. Memory Reference – These instructions refer to memory address as an operand. The

other operand is always accumulator. Specifies 12 bit address, 3 bit opcode (other than

111) and 1 bit addressing mode for direct and indirect addressing.

Example –

IR register contains = 0001XXXXXXXXXXXX, i.e. ADD after fetching and decoding of
instruction we find out that it is a memory reference instruction for ADD operation.

2. Register Reference – These instructions perform operations on registers rather than

memory addresses. The IR(14-12) is 111 (differentiates it from memory reference) and

IR(15) is 0 (differentiates it from input/output instructions). The rest 12 bits specify

register operation.

Example –

IR register contains = 0111001000000000, i.e. CMA after fetch and decode cycle we find
out that it is a register reference instruction for complement accumulator.

3. Input/Output – These instructions are for communication between computer and

outside environment. The IR(14-12) is 111 (differentiates it from memory reference) and

IR(15) is 1 (differentiates it from register reference instructions). The rest 12 bits specify
I/O operation.

Example –

IR register contains = 1111100000000000, i.e. INP after fetch and decode cycle we find

out that it is an input/output instruction for inputing character. Hence, INPUT character

from peripheral device.

Hence, AC <- ~AC

Hence, DR <- M[AR]

AC <- AC+ DR, SC <- 0

AY:2024-25 COMPUTER ORGANIZATION

40 DEPT OF CSE

Timing and Control

All sequential circuits in the Basic Computer CPU are driven by a master clock, with the

exception of the INPR register. At each clock pulse, the control unit sends control signals to

control inputs of the bus, the registers, and the ALU.

Control unit design and implementation can be done by two general methods:

 A hardwired control unit is designed from scratch using traditional digital logic design

techniques to produce a minimal, optimized circuit. In other words, the control unit is

like an ASIC (application-specific integrated circuit).

 A microprogrammed control unit is built from some sort of ROM. The desired control

signals are simply stored in the ROM, and retrieved in sequence to drive the

microoperations needed by a particular instruction.

Instruction Cycle

The CPU performs a sequence of microoperations for each instruction. The sequence for each

instruction of the Basic Computer can be refined into 4 abstract phases:

1. Fetch instruction

2. Decode

3. Fetch operand

4. Execute

Program execution can be represented as a top-down design:

1. Program execution

a. Instruction 1

i. Fetch instruction

ii. Decode

iii. Fetch operand

iv. Execute

b. Instruction 2

i. Fetch instruction

ii. Decode

iii. Fetch operand

iv. Execute

c. Instruction 3 ...

Program execution begins with:

PC ← address of first instruction, SC ← 0

After this, the SC is incremented at each clock cycle until an instruction is completed, and then

it is cleared to begin the next instruction. This process repeats until a HLT instruction is

executed, or until the power is shut off.

Instruction Fetch and Decode

The instruction fetch and decode phases are the same for all instructions, so the control

functions and microoperations will be independent of the instruction code.

AY:2024-25 COMPUTER ORGANIZATION

41 DEPT OF CSE

Everything that happens in this phase is driven entirely by timing variables T0, T1 and T2.

Hence, all control inputs in the CPU during fetch and decode are functions of these three

variables alone.

T0: AR ← PC

T1: IR ← M[AR], PC ← PC + 1

T2: D0-7 ← decoded IR(12-14), AR ← IR(0-11), I ← IR(15)

For every timing cycle, we assume SC ← SC + 1 unless it is stated that SC ← 0.

Micro Programmed Control:

Control Memory

 The control unit in a digital computer initiates sequences of microoperations

 The complexity of the digital system is derived form the number of sequences that are
performed

 When the control signals are generated by hardware, it is hardwired

 In a bus-oriented system, the control signals that specify microoperations are groups
of bits that select the paths in multiplexers, decoders, and ALUs.

 The control unit initiates a series of sequential steps of microoperations

 The control variables can be represented by a string of 1’s and 0’s called a control word

 A microprogrammed control unit is a control unit whose binary control variables are
stored in memory

 A sequence of microinstructions constitutes a microprogram

 The control memory can be a read-only memory

 Dynamic microprogramming permits a microprogram to be loaded and uses a

writable control memory

 A computer with a microprogrammed control unit will have two separate
memories: a main memory and a control memory

 The microprogram consists of microinstructions that specify various internal control
signals for execution of register microoperations

 These microinstructions generate the microoperations to:

o fetch the instruction from main memory

o evaluate the effective address

o execute the operation
o return control to the fetch phase for the next instruction

 The control memory address register specifies the address of the microinstruction

 The control data register holds the microinstruction read from memory

 The microinstruction contains a control word that specifies one or more
microoperations for the data processor

 The location for the next microinstruction may, or may not be the next in

sequence

 Some bits of the present microinstruction control the generation of the address ofthe next
microinstruction

 The next address may also be a function of external input conditions

 While the microoperations are being executed, the next address is computed in the next

AY:2024-25 COMPUTER ORGANIZATION

42 DEPT OF CSE

address generator circuit (sequencer) and then transferred into the CAR to read the
next microinstructions

 Typical functions of a sequencer are:

o incrementing the CAR by one

o loading into the CAR and address from control memory

o transferring an external address

o loading an initial address to start the control operations

 A clock is applied to the CAR and the control word and next-address information are

taken directly from the control memory

 The address value is the input for the ROM and the control work is the output

 No read signal is required for the ROM as in a RAM

 The main advantage of the microprogrammed control is that once the hardware
configuration is established, there should be no need for h/w or wiring changes

 To establish a different control sequence, specify a different set of
microinstructions for control memory

Address Sequencing

 Microinstructions are stored in control memory in groups, with each group specifying a
routine

 Each computer instruction has its own microprogram routine to generate the
microoperations

 The hardware that controls the address sequencing of the control memory must be capable
of sequencing the microinstructions within a routine and be able to branch from one

routine to another

 Steps the control must undergo during the execution of a single computer
instruction:

o Load an initial address into the CAR when power is turned on in the computer. This
address is usually the address of the first microinstruction that activates the
instruction fetch routine – IR holds instruction

o The control memory then goes through the routine to determine the effective
address of the operand – AR holds operand address

o The next step is to generate the microoperations that execute the
instructionby considering the opcode and applying a mapping

o After execution, control must return to the fetch routine by executing an
unconditional branch

 The microinstruction in control memory contains a set of bits to initiate

microoperations in computer registers and other bits to specify the method by
which the next address is obtained

 Conditional branching is obtained by using part of the microinstruction to select a specific
status bit in order to determine its condition

 The status conditions are special bits in the system that provide parameter information

such as the carry-out of an adder, the sign bit of a number, the mode bits of an

instruction, and i/o status conditions

 The status bits, together with the field in the microinstruction that specifies a branch
address, control the branch logic

 The branch logic tests the condition, if met then branches, otherwise, increments the

CAR

AY:2024-25 COMPUTER ORGANIZATION

43 DEPT OF CSE

 If there are 8 status bit conditions, then 3 bits in the microinstruction are used to specify
the condition and provide the selection variables for the multiplexer

 For unconditional branching, fix the value of one status bit to be one load the branch

address from control memory into the CAR

 A special type of branch exists when a microinstruction specifies a branch to the first
word in control memory where a microprogram routine is located

 The status bits for this type of branch are the bits in the opcode

 Assume an opcode of four bits and a control memory of 128 locations

 The mapping process converts the 4-bit opcode to a 7-bit address for control
memory

 This provides for each computer instruction a microprogram routine with a
capacity of four microinstructions

 Subroutines are programs that are used by other routines to accomplish a particular
task and can be called from any point within the main body of themicroprogram

 Frequently many microprograms contain identical section of code

 Microinstructions can be saved by employing subroutines that use common

sections of microcode

 Microprograms that use subroutines must have a provisions for storing the return address

during a subroutine call and restoring the address during a subroutine return

 A subroutine register is used as the source and destination for the addresses

AY:2024-25 COMPUTER ORGANIZATION

44 DEPT OF CSE

UNIT 3

Syllabus:

Central Processing Unit organization: General Register Organization, Stack organization,

Instruction formats, Addressing modes, Data Transfer and Manipulation, Program Control,

CISC and RISC processors

Control unit design: Design approaches, Control memory, Address sequencing, micro program

example, design of CU. Micro Programmed Control.

Computer Processing Unit Organization

Introduction to CPU

The operation or task that must perform by CPU is:

• Fetch Instruction: The CPU reads an instruction from memory.

• Interpret Instruction: The instruction is decoded to determine what action is required.

• Fetch Data: The execution of an instruction may require reading data from memory or I/O
module.

• Process data: The execution of an instruction may require performing some arithmetic or
logical operation on data.

• Write data: The result of an execution may require writing data to memory or an I/O module.

To do these tasks, it should be clear that the CPU needs to store some data temporarily. It must

remember the location of the last instruction so that it can know where to get the next

instruction. It needs to store instructions and data temporarily while an instruction is being

executed. In other words, the CPU needs a small internal memory. These storage locations are

generally referred as registers.

The major components of the CPU are an arithmetic and logic unit (ALU) and a control unit

(CU). The ALU does the actual computation or processing of data. The CU controls the

movement of data and instruction into and out of the CPU and controls the operation of the

ALU.

The CPU is connected to the rest of the system through system bus. Through system bus, data or

information gets transferred between the CPU and the other component of the system. The

system bus may have three components:

Data Bus: Data bus is used to transfer the data between main memory and CPU.

Address Bus: Address bus is used to access a particular memory location by putting the address
of the memory location.

Control Bus: Control bus is used to provide the different control signal generated by CPU to
different part of the system.

As for example, memory read is a signal generated by CPU to indicate that a memory read

operation has to be performed. Through control bus this signal is transferred to memory module

to indicate the required operation.

AY:2024-25 COMPUTER ORGANIZATION

45 DEPT OF CSE

Figure 1: CPU with the system bus.

There are three basic components of CPU: register bank, ALU and Control Unit. There are

several data movements between these units and for that an internal CPU bus is used. Internal

CPU bus is needed to transfer data between the various registers and the ALU.

Figure 2 : Internal Structure of CPU

Stack Organization:

A useful feature that is included in the CPU of most computers is a stack or last in, first out

(LIFO) list. A stack is a storage device that stores information in such a manner that the item

stored last is the first item retrieved. The operation of a stack can be compared to a stack of

trays. The last tray placed on top of the stack is the first to be taken off.

The stack in digital computers is essentially a memory unit with an address register that can

only(after an initial value is loaded in to it).The register that hold the address for the stack is

called a stack pointer (SP) because its value always points at the top item in stack. Contrary to a

stack of trays where the tray it self may be taken out or inserted, the physical registers of a stack

are always available for reading or writing.

AY:2024-25 COMPUTER ORGANIZATION

46 DEPT OF CSE

The two operation of stack are the insertion and deletion of items. The operation of insertion is

called PUSH because it can be thought of as the result of pushing a new item on top. The

operation of deletion is called POP because it can be thought of as the result of removing one

item so that the stack pops up. However, nothing is pushed or popped in a computer stack.

These operations are simulated by incrementing or decrementing the stack pointer register.

Register stack:

A stack can be placed in a portion of a large memory or it can be organized as a collection of

a finite number of memory words or registers. Figure X shows the organization of a 64-word

register stack. The stack pointer register SP contains a binary number whose value is equal to

the address of the word that is currently on top of the stack. Three items are placed in the stack:

A, B, and C in the order. item C is on the top of the stack so that the content of sp is now 3. To

remove the top item, the stack is popped by reading the memory word at address 3 and

decrementing the content of SP. Item B is now on top of the stack since SP holds address 2. To

insert a new item, the stack is pushed by incrementing SP and writing a word in the next higher

location in the stack. Note that item C has read out but not physically removed. This does not

matter because when the stack is pushed, a new item is written in its place.

In a 64-word stack, the stack pointer contains 6 bits because 26 =64. since SP has only six bits,

it cannot exceed a number grater than 63(111111 in binary). When 63 is incremented by 1, the

result is 0 since 111111 + 1 =1000000 in binary, but SP can accommodate only the six least

significant bits. Similarly, when 000000 is decremented by 1, the result is 111111. The one bit

register Full is set to 1 when the stack is full, and the one-bit register EMTY is set to 1 when the

stack is empty of items. DR is the data register that holds the binary data to be written in to or

read out of the stack.

Figure 3: Block Diagram Of A 64-Word Stack

Initially, SP is cleared to 0, Emty is set to 1, and Full is cleared to 0, so that SP points to the

word at address o and the stack is marked empty and not full. if the stack is not full , a new item

is inserted with a push operation. the push operation is implemented with the following

sequence of micro-operation.

SP ←SP + 1 (Increment stack pointer)

M(SP) ← DR (Write item on top of the stack)

if (sp=0) then (Full ← 1) (Check if stack is full)

Emty ← 0 (Marked the stack not empty)

AY:2024-25 COMPUTER ORGANIZATION

47 DEPT OF CSE

The stack pointer is incremented so that it points to the address of the next-higher word. A

memory write operation inserts the word from DR into the top of the stack. Note that SP holds

the address of the top of the stack and that M(SP) denotes the memory word specified by the

address presently available in SP, the first item stored in the stack is at address 1. The last item

is stored at address 0, if SP reaches 0, the stack is full of item, so FULLL is set to 1. This

condition is reached if the top item prior to the last push was in location 63 and after increment

SP, the last item stored in location 0. Once an item is stored in location 0, there are no more

empty register in the stack. If an item is written in the stack, Obviously the stack can not be

empty, so EMTY is cleared to 0.

DR← M[SP] Read item from the top of stack

SP ← SP-1 Decrement stack Pointer

if(SP=0) then (Emty ← 1) Check if stack is empty

FULL ← 0 Mark the stack not full

The top item is read from the stack into DR. The stack pointer is then decremented. if its value

reaches zero, the stack is empty, so Emty is set to 1. This condition is reached if the item read

was in location 1. once this item is read out , SP is decremented and reaches the value 0, which

is the initial value of SP. Note that if a pop operation reads the item from location 0 and then SP

is decremented, SP changes to 111111, which is equal to decimal 63. In this configuration, the

word in address 0 receives the last item in the stack. Note also that an erroneous operation will

result if the stack is pushed when FULL=1 or popped when EMTY =1.

Memory Stack :

A stack can exist as a stand-alone unit as in figure 4 or can be implemented in a random access

memory attached to CPU. The implementation of a stack in the CPU is done by assigning a

portion of memory to a stack operation and using a processor register as a stack pointer. Figure

shows a portion of computer memory partitioned in to three segment program, data and stack.

The program counter PC points at the address of the next instruction in the program. The

address register AR points at an array of data. The stack pointer SP points at the top of the stack.

The three register are connected to a common address bus, and either one can provide an address

for memory. PC is used during the fetch phase to read an instruction. AR is used during the

execute phase to read an operand. SP is used to push or POP items into or from the stack.

As show in figure :4 the initial value of SP is 4001 and the stack grows with decreasing

addresses. Thus the first item stored in the stack is at address 4000, the second item is stored at

address 3999, and the last address hat can be used for the stack is 3000. No previous are

available for stack limit checks. We assume that the items in the stack communicate with a data

register DR. A new item is inserted with the push operation as follows.

SP← SP-1

M[SP] ← DR

The stack pointer is decremented so that it points at the address of the next word. A Memory

write operation insertion the word from DR into the top of the stack. A new item is deleted with

a pop operation as follows.

DR← M[SP]
SP←SP + 1

AY:2024-25 COMPUTER ORGANIZATION

48 DEPT OF CSE

The top item is read from the stack in to DR. The stack pointer is then incremented to point at
the next item in the stack.

Most computer do not provide hardware to check for stack overflow (FULL) or underflow
(Empty). The stack limit can be checked by using two prossor register :

one to hold upper limit and other hold the lower limit. after the pop or push operation SP is

compared with lower or upper limit register.

Figure 4: computer memory with program, data and stack segments

INSTRUCTION FORMATS:

We know that a machine instruction has an opcode and zero or more operands. Encoding an

instruction set can be done in a variety of ways. Architectures are differentiated from one

another by the number of bits allowed per instruction (16, 32, and 64 are the most common), by

the number of operands allowed per instruction, and by the types of instructions and data each

can process. More specifically, instruction sets are differentiated by the following features:

1. Operand storage in the CPU (data can be stored in a stack structure or in registers)

2. Number of explicit operands per instruction (zero, one, two, and three being the most

common)

3. Operand location (instructions can be classified as register-to-register, register-to-memory or

memory-to-memory, which simply refer to the combinations of operands allowed per

instruction)

4. Operations (including not only types of operations but also which instructions can access
memory and which cannot)

5. Type and size of operands (operands can be addresses, numbers, or even characters)

AY:2024-25 COMPUTER ORGANIZATION

49 DEPT OF CSE

Number of Addresses:

One of the characteristics of the ISA(Industrial Standard Architecture) that shapes the

architecture is the number of addresses used in an instruction. Most operations can be divided

into binary or unary operations. Binary operations such as addition and multiplication require

two input operands whereas the unary operations such as the logical NOT need only a single

operand. Most operations produce a single result. There are exceptions, however. For example,

the division operation produces two outputs: a quotient and a remainder. Since most operations

are binary, we need a total of three addresses: two addresses to specify the two input operands

and one to specify where the result should go.

Three-Address Machines:

In three-address machines, instructions carry all three addresses explicitly. The RISC

processors use three addresses. Table X1 gives some sample instructions of a three-address

machine.

In these machines, the C statement

A = B + C * D - E + F + A

is converted to the following code:

mult T,C,D ; T = C*D

add T,T,B ; T = B + C*D

sub T,T,E ; T = B + C*D - E

add T,T,F ; T = B + C*D - E + F

add A,T,A ; A = B + C*D - E + F + A

Table :T1 Sample three-address machine instructions

Instruction

Semantics

add dest,src1,src2 Adds the two values at src1 and src2 and

stores the result in dest

M(dest) = [src1] + [src2]

sub dest,src1,src2 Subtracts the second
source operand at src2 from the first at
src1 and stores the result in dest
M(dest) = [src1] - [src2]

mult dest,src1,src2 Multiplies the two values at src1

and src2 and stores the result in dest

M(dest) = [src1] * [src2]

We use the notation that each variable represents a memory address that stores the value

associated with that variable. This translation from symbol name to the memory address is done

by using a symbol table.

As you can see from this code, there is one instruction for each arithmetic operation. Also

notice that all instructions, barring the first one, use an address twice. In the middle three

instructions, it is the temporary T and in the last one, it is A. This is the motivation for using two

addresses, as we show next.

AY:2024-25 COMPUTER ORGANIZATION

50 DEPT OF CSE

Two-Address Machines :

In two-address machines, one address doubles as a source and destination. Usually, we use dest

to indicate that the address is used for destination. But you should note that this address also

supplies one of the source operands. The Pentium is an example processor that uses two

addresses. Sample instructions of a two-address machine

On these machines, the C statement

A = B + C * D - E + F + A

is converted to the following code:

load T,C ; T = C

mult T,D ; T = C*D

add T,B ; T = B + C*D

sub T,E ; T = B + C*D - E

add T,F ; T = B + C*D - E + F

add A,T ; A = B + C*D - E + F + A

Table :T2 Sample Two-address machine instructions:

Instruction

Semantics

load dest,src Copies the value at src to dest

M(dest) = [src]

add dest,src Adds the two values at src and dest and

stores the result in dest
M(dest) = [dest] + [src]

sub dest,src Subtracts the second source operand at
src from the first at dest and

stores the result in dest

M(dest) = [dest] - [src]

mult dest,src Multiplies the two values at src and dest and
stores the result in dest

M(dest) = [dest] * [src]

Since we use only two addresses, we use a load instruction to first copy the C value into a

temporary represented by T. If you look at these six instructions, you will notice that the

operand T is common. If we make this our default, then we don’t need even two addresses: we

can get away with just one address.

One-Address Machines :

In the early machines, when memory was expensive and slow, a special set of registers was

used to provide an input operand as well as to receive the result from the ALU. Because of this,

these registers are called the accumulators. In most machines, there is just a single accumulator

register. This kind of design, called accumulator machines, makes sense if memory isexpensive.

In accumulator machines, most operations are performed on the contents of the accumulator

and the operand supplied by the instruction. Thus, instructions for these machines need to

specify only the address of a single operand. There is no need to store the result in memory: this

reduces the need for larger memory as well as speeds up the computation by reducing the

number of memory accesses. A few sample accumulator machine instructions are shown in

AY:2024-25 COMPUTER ORGANIZATION

51 DEPT OF CSE

Table X3.

In these machines, the C statement

A = B + C * D - E + F + A

is converted to the following code:

load C ; load C into the accumulator

mult D ; accumulator = C*D

add B ; accumulator = C*D+B

sub E ; accumulator = C*D+B-E

add F ; accumulator = C*D+B-E+F

add A ; accumulator = C*D+B-E+F+A

store A ; store the accumulator contents in A

Table :T3 Sample ONE-address machine instructions

default location. These machines use the stack as the source of the input operands and the

result goes back into the stack. Stack is a LIFO (last-in-first-out) data structure that all
processors support, whether or not they are zero-address machines. As the name implies, the
last item placed on the stack is the first item to be taken out of the stack. A good analogy is the

stack of trays you find in a cafeteria.

All operations on this type of machine assume that the required input operands are the

top two values on the stack. The result of the operation is placed on top of the stack. Table X4
gives some sample instructions for the stack machines.

Table :T4 Sample Zero-address machine instructions

Instruction Semantics

push addr Places the value at address addr on top of the stack

push([addr])

pop addr Stores the top value on the stack at memory address addr

Instruction Semantics

load addr
Copies the value at address addr into
the

 accumulator accumulator = [addr]
stor
e addr

Stores the value in the accumulator at
the

 memory address addr

 M(addr) = accumulator

add addr
Adds the contents of the accumulator
and

 value at address addr

 accumulator = accumulator +
[addr]

sub addr Subtracts the value at memory address
 addr from the contents of the

accumulator
 accumulator = accumulator - [addr]

mult addr Multiplies the contents of the
 accumulator and value at address

addr

 accumulator = accumulator * [addr]
Zero-Address Machines :

In zero-address machines, locations of both operands are assumed to be at a

AY:2024-25 COMPUTER ORGANIZATION

52 DEPT OF CSE

 M(addr) = pop

add Adds the top two values on the stack and pushes the result

onto the stack

push(pop + pop)

sub
Subtracts the second top value from the top value of the
stack
and pushes the result onto the stack

push(pop – pop)

mult
Multiplies the top two values in the stack and pushes the
result

onto the stack

push(pop * pop)

Notice that the first two instructions are not zero-address instructions. These two are

special instructions that use a single address and are used to move data between memory and

stack.

All other instructions use the zero-address format. Let’s see how the stack machine
translates the arithmetic expression we have seen in the previous subsections. In these machines,
the C statement

A = B + C * D - E + F + A

is converted to the following code:

push E ; <E>

push C ; <C, E>

push D ; <D, C, E>
mult ; <C*D, E>

push B ; <B, C*D, E>
add ; <B+C*D, E>

sub ; <B+C*D-E>

push F ; <F, B+D*C-E>
add ; <F+B+D*C-E>

push A ; <A, F+B+D*C-E>

add ; <A+F+B+D*C-E>
pop A ; < >

On the right, we show the state of the stack after executing each instruction. The top

element of the stack is shown on the left. Notice that we pushed E early because we need to

subtract it from (B+C*D).

Stack machines are implemented by making the top portion of the stack internal to the

processor. This is referred to as the stack depth. The rest of the stack is placed in memory. Thus,

to access the top values that are within the stack depth, we do not have to access the memory.

Obviously, we get better performance by increasing the stack depth.

INSTRUCTION TYPES

Most computer instructions operate on data; however, there are some that do not.

Computer manufacturers regularly group instructions into the following categories:

• Data movement
• Arithmetic
• Boolean

• Bit manipulation (shift and rotate)

• I/O

AY:2024-25 COMPUTER ORGANIZATION

53 DEPT OF CSE

• Transfer of control
• Special purpose

Data movement instructions are the most frequently used instructions. Data is moved

from memory into registers, from registers to registers, and from registers to memory, and many

machines provide different instructions depending on the source and destination. For example,

there may be a MOVER instruction that always requires two register operands, whereas a
MOVE instruction allows one register and one memory operand.

Some architectures, such as RISC, limit the instructions that can move data to and from

memory in an attempt to speed up execution. Many machines have ariations of load, store, and

move instructions to handle data of different sizes. For example, there may be a LOADB

instruction for dealing with bytes and a LOADW instruction for handling words.
Arithmetic operations include those instructions that use integers and floating point

numbers. Many instruction sets provide different arithmetic instructions for various data sizes.
As with the data movement instructions, there are sometimes different instructions for providing
various combinations of register and memory accesses in different addressing modes.

Boolean logic instructions perform Boolean operations, much in the same way that
arithmetic operations work. There are typically instructions for performing AND, NOT, and
often OR and XOR operations.

Bit manipulation instructions are used for setting and resetting individual bits (or

sometimes groups of bits) within a given data word. These include both arithmetic and logical

shift instructions and rotate instructions, both to the left and to the right. Logical shift

instructions simply shift bits to either the left or the right by a specified amount, shifting in zeros

from the opposite end. Arithmetic shift instructions, commonly used to multiply or divide by 2,

do not shift the leftmost bit, because this represents the sign of the number. On a right arithmetic

shift, the sign bit is replicated into the bit position to its right. On a left arithmetic shift, values

are shifted left, zeros are shifted in, but the sign bit is never moved. Rotate instructions are

simply shift instructions that shift in the bits that are shifted out. For example, on a rotate left 1

bit, the leftmost bit is shifted out and rotated around to become the rightmost bit.

I/O instructions vary greatly from architecture to architecture. The basic schemes for
handling I/O are programmed I/O, interrupt-driven I/O, and DMA devices. These are covered in
more detail in Chapter 5.

Control instructions include branches, skips, and procedure calls. Branching can be

unconditional or conditional. Skip instructions are basically branch instructions with implied
addresses. Because no operand is required, skip instructions often use bits of the address field to
specify different situations (recall the Skipcond instruction used by MARIE). Procedure calls are

special branch instructions that automatically save the return address. Different machines use
different methods to save this address. Some store the address at a specific location in memory,
others store it in a register, while still others push the return address on a stack. We have already

seen that stacks can be used for other purposes.
Special purpose instructions include those used for string processing, high level

language support, protection, flag control, and cache management. Most architectures provide
instructions for string processing, including string manipulation and searching.

Addressing Modes

We have examined the types of operands and operations that may be specified by

machine instructions. Now we have to see how is the address of an operand specified, and how

are the bits of an instruction organized to define the operand addresses and operation of that

instruction.

AY:2024-25 COMPUTER ORGANIZATION

54 DEPT OF CSE

Addressing Modes: The most common addressing techniques are

• Immediate

• Direct

• Indirect

• Register

• Register Indirect

• Displacement

• Stack

All computer architectures provide more than one of these addressing modes. The

question arises as to how the control unit can determine which addressing mode is being used in

a particular instruction. Several approaches are used. Often, different opcodes will use different

addressing modes. Also, one or more bits in the instruction format can be used as a mode field.

The value of the mode field determines which addressing mode is to be used.

What is the interpretation of effective address. In a system without virtual memory, the

effective address will be either a main memory address or a register. In a virtual memory

system, the effective address is a virtual address or a register. The actual mapping to a physical

address is a function of the paging mechanism and is invisible to the programmer.

To explain the addressing modes, we use the following notation:

A

=
contents of an address field in the instruction that refers to
a

memory

R

=

contents of an address field in the instruction that refers to
a

register

EA

=
actual (effective) address of the location containing the

referenced operand

(X) = contents of location X

Immediate Addressing:

The simplest form of addressing is immediate addressing, in which the operand is
actually present in the instruction:

OPERAND = A
This mode can be used to define and use constants or set initial values of variables. The

advantage of immediate addressing is that no memory reference other than the instruction fetch

is required to obtain the operand. The disadvantage is that the size of the number is restricted to

the size of the address field, which, in most instruction sets, is small compared with the world
length.

AY:2024-25 COMPUTER ORGANIZATION

55 DEPT OF CSE

Figure 4.1: Immediate Addressing Mod

The instruction format for Immediate Addressing Mode is shown in the Figure 4.1.

Direct Addressing:

A very simple form of addressing is direct addressing, in which the address field contains
the effective address of the operand:

EA = A

It requires only one memory reference and no special calculation.

Figure 4.2: Direct Addressing Mode

Indirect Addressing:

With direct addressing, the length of the address field is usually less than the word
length, thus limiting the address range. One solution is to have the address field refer to the
address of a word in memory, which in turn contains a full-length address of the operand. This is
know as indirect addressing:

EA = (A)

Figure 4.3: Indirect Addressing Mode

Register Addressing:

Register addressing is similar to direct addressing. The only difference is that the address
field refers to a register rather than a main memory address:

EA = R

The advantages of register addressing are that only a small address field is needed in the

instruction and no memory reference is required. The disadvantage of register addressing is that

the address space is very limited.

AY:2024-25 COMPUTER ORGANIZATION

56 DEPT OF CSE

Figure 4.4: Register Addressing Mode.

The exact register location of the operand in case of Register Addressing Mode is shown

in the Figure 34.4. Here, 'R' indicates a register where the operand is present.

Register Indirect Addressing:

Register indirect addressing is similar to indirect addressing, except that the address field
refers to a register instead of a memory location. It requires only one memory reference and no
special calculation.

EA = (R)
Register indirect addressing uses one less memory reference than indirect addressing.

Because, the first information is available in a register which is nothing but a memory address.

From that memory location, we use to get the data or information. In general, register access is

much more faster than the memory access.

Diaplacement Addressing:

A very powerful mode of addressing combines the capabilities of direct addressing and
register indirect addressing, which is broadly categorized as displacement addressing:

EA = A + (R)

Displacement addressing requires that the instruction have two address fields, at least one

of which is explicit. The value contained in one address field (value = A) is used directly. The

other address field, or an implicit reference based on opcode, refers to a register whose contents

are added to A to produce the effective address. The general format of Displacement Addressing

is shown in the Figure 4.6.

Three of the most common use of displacement addressing are:

AY:2024-25 COMPUTER ORGANIZATION

57 DEPT OF CSE

• Relative addressing

• Base-register addressing

• Indexing

Figure 4.6: Displacement Addressing

Relative Addressing:

For relative addressing, the implicitly referenced register is the program counter (PC).
That is, the current instruction address is added to the address field to produce the EA. Thus, the

effective address is a displacement relative to the address of the instruction.

Base-Register Addressing:

The reference register contains a memory address, and the address field contains a
displacement from that address. The register reference may be explicit or implicit. In some
implementation, a single segment/base register is employed and is used implicitly. In others, the

programmer may choose a register to hold the base address of a segment, and the instruction
must reference it explicitly.

Indexing:

The address field references a main memory address, and the reference register contains
a positive displacement from that address. In this case also the register reference is sometimes
explicit and sometimes implicit.

Generally index register are used for iterative tasks, it is typical that there is a need to

increment or decrement the index register after each reference to it. Because this is such a

common operation, some system will automatically do this as part of the same instruction cycle.
This is known as auto-indexing. We may get two types of auto-indexing: -one is auto-

incrementing and the other one is -auto-decrementing.

If certain registers are devoted exclusively to indexing, then auto-indexing can be

invoked implicitly and automatically. If general purpose register are used, the auto index

operation may need to be signaled by a bit in the instruction.

Auto-indexing using increment can be depicted as follows:

EA = A + (R)
R = (R) + 1

Auto-indexing using decrement can be depicted as follows:

AY:2024-25 COMPUTER ORGANIZATION

58 DEPT OF CSE

EA

=

A

+

(R)
R = (R) - 1

In some machines, both indirect addressing and indexing are provided, and it is possible

to employ both in the same instruction. There are two possibilities: The indexing is performed

either before or after the indirection.

If indexing is performed after the indirection, it is termed post indexing

EA = (A) + (R)

First, the contents of the address field are used to access a memory location containing an

address. This address is then indexed by the register value.

With pre indexing, the indexing is performed before the indirection:

EA = (A + (R)

An address is calculated, the calculated address contains not the operand, but the address

of the operand.

Stack Addressing:

A stack is a linear array or list of locations. It is sometimes referred to as a pushdown list
or last-in- first-out queue. A stack is a reserved block of locations. Items are appended to the top
of the stack so that, at any given time, the block is partially filled. Associated with the stack is a
pointer whose value is the address of the top of the stack. The stack pointer is maintained in a

register. Thus, references to stack locations in memory are in fact register indirect addresses.

The stack mode of addressing is a form of implied addressing. The machine instructions
need not include a memory reference but implicitly operate on the top of the stack.

AY:2024-25 COMPUTER ORGANIZATION

59 DEPT OF CSE

UNIT 4

Syllabus:

Memory Organization: Semiconductor memory technologies, hierarchy, Interleaving, Main

Memory-RAM and ROM chips, Address map, Associative memory-Hardware organization.

Match logic. Cache memory-size vs. block size, Mapping functions-Associate, Direct, Set

Associative mapping. Replacement algorithms, write policies. Auxiliary memory-Magnetic

tapes etc

Memory Hierarchy

The total memory capacity of a computer can be visualized by hierarchy of components.

The memory hierarchy system consists of all storage devices contained in a computer system

from the slow Auxiliary Memory to fast Main Memory and to smaller Cache memory.

Auxillary memory access time is generally 1000 times that of the main memory, hence it is at

the bottom of the hierarchy.

The main memory occupies the central position because it is equipped to communicate directly

with the CPU and with auxiliary memory devices through Input/output processor (I/O).

When the program not residing in main memory is needed by the CPU, they are brought in from

auxiliary memory. Programs not currently needed in main memory are transferred into auxiliary

memory to provide space in main memory for other programs that are currently in use.

The cache memory is used to store program data which is currently being executed in the CPU.

Approximate access time ratio between cache memory and main memory is about 1 to 7~10

AY:2024-25 COMPUTER ORGANIZATION

60 DEPT OF CSE

Memory Access Methods

Each memory type, is a collection of numerous memory locations. To access data from any

memory, first it must be located and then the data is read from the memory location. Following

are the methods to access information from memory locations:

1. Random Access: Main memories are random access memories, in which each memory

location has a unique address. Using this unique address any memory location can be

reached in the same amount of time in any order.

2. Sequential Access: This methods allows memory access in a sequence or in order.

3. Direct Access: In this mode, information is stored in tracks, with each track having a

separate read/write head.

Main Memory

The memory unit that communicates directly within the CPU, Auxillary memory and Cache

memory, is called main memory. It is the central storage unit of the computer system. It is a

large and fast memory used to store data during computer operations. Main memory is made up

of RAM and ROM, with RAM integrated circuit chips holing the major share.

 RAM: Random Access Memory

o DRAM: Dynamic RAM, is made of capacitors and transistors, and must be

refreshed every 10~100 ms. It is slower and cheaper than SRAM.

o SRAM: Static RAM, has a six transistor circuit in each cell and retains data, until

powered off.

o NVRAM: Non-Volatile RAM, retains its data, even when turned off. Example:

Flash memory.

AY:2024-25 COMPUTER ORGANIZATION

61 DEPT OF CSE

 ROM: Read Only Memory, is non-volatile and is more like a permanent storage for

information. It also stores the bootstrap loader program, to load and start the operating

system when computer is turned on. PROM(Programmable ROM), EPROM(Erasable

PROM) and EEPROM(Electrically Erasable PROM) are some commonly used ROMs.

Memory Address map:

 The addressing of memory can establish by means of a table that specifies the memory

address assigned to each chip.

 The table, called a memory address map, is a pictorial representation of assigned

address space for each chip in the system, shown in the table.

 To demonstrate with a particular example, assume that a computer system needs 512

bytes of RAM and 512 bytes of ROM.

 The RAM and ROM chips to be used specified in figures.

 The component column specifies whether a RAM or a ROM chip used.
 Moreover, The hexadecimal address column assigns a range of hexadecimal equivalent

addresses for each chip.

 The address bus lines listed in the third column.

 Although there 16 lines in the address bus, the table shows only 10 lines because the

other 6 not used in this example and assumed to be zero.

 The small x’s under the address bus lines designate those lines that must connect to the

address inputs in each chip.

 Moreover, The RAM chips have 128 bytes and need seven address lines. The ROM chip

has 512 bytes and needs 9 address lines.

 The x’s always assigned to the low-order bus lines: lines 1 through 7 for the RAM. And

lines 1 through 9 for the ROM.

 It is now necessary to distinguish between four RAM chips by assigning to each a

different address. For this particular example, we choose bus lines 8 and 9 to represent

four distinct binary combinations.
 Also, The table clearly shows that the nine low-order bus lines constitute a memory

space for RAM equal to 29 = 512 bytes.
 The distinction between a RAM and ROM address done with another bus line. Here we

choose line 10 for this purpose.

 When line 10 0, the CPU selects a RAM, and when this line equal to 1, it selects the

ROM.

Auxiliary Memory

Devices that provide backup storage are called auxiliary memory. For

example: Magnetic disks and tapes are commonly used auxiliary devices. Other devices used as

AY:2024-25 COMPUTER ORGANIZATION

62 DEPT OF CSE

auxiliary memory are magnetic drums, magnetic bubble memory and optical disks.

It is not directly accessible to the CPU, and is accessed using the Input/Output channels.

Cache Memory

The data or contents of the main memory that are used again and again by CPU, are

stored in the cache memory so that we can easily access that data in shorter time.

Whenever the CPU needs to access memory, it first checks the cache memory. If the data is not

found in cache memory then the CPU moves onto the main memory. It also transfers block of

recent data into the cache and keeps on deleting the old data in cache to accomodate the new

one.

Hit Ratio

The performance of cache memory is measured in terms of a quantity called hit ratio.

When the CPU refers to memory and finds the word in cache it is said to produce a hit. If the

word is not found in cache, it is in main memory then it counts as a miss.

The ratio of the number of hits to the total CPU references to memory is called hit ratio.

Hit Ratio = Hit/(Hit + Miss)

Associative Memory

It is also known as content addressable memory (CAM). It is a memory chip in which

each bit position can be compared. In this the content is compared in each bit cell which allows

very fast table lookup. Since the entire chip can be compared, contents are randomly stored

without considering addressing scheme. These chips have less storage capacity than regular

memory chips.

Memory Mapping and Concept of Virtual Memory

The transformation of data from main memory to cache memory is called mapping. There

are 3 main types of mapping:

 Associative Mapping

 Direct Mapping

 Set Associative Mapping

Associative Mapping

The associative memory stores both address and data. The address value of 15 bits is 5

digit octal numbers and data is of 12 bits word in 4 digit octal number. A CPU address of 15 bits

is placed in argument register and the associative memory is searched for matching address.

AY:2024-25 COMPUTER ORGANIZATION

63 DEPT OF CSE

Direct Mapping

The CPU address of 15 bits is divided into 2 fields. In this the 9 least significant bits

constitute the index field and the remaining 6 bits constitute the tag field. The number of bits in

index field is equal to the number of address bits required to access cache memory.

Set Associative Mapping

The disadvantage of direct mapping is that two words with same index address can't reside in

cache memory at the same time. This problem can be overcome by set associative mapping.

In this we can store two or more words of memory under the same index address. Each data

word is stored together with its tag and this forms a set.

AY:2024-25 COMPUTER ORGANIZATION

64 DEPT OF CSE

Replacement Algorithms

Data is continuously replaced with new data in the cache memory using replacement

algorithms. Following are the 2 replacement algorithms used:

 FIFO - First in First out. Oldest item is replaced with the latest item.

 LRU - Least Recently Used. Item which is least recently used by CPU is removed.

Writing in to cache and cache Initialization:

The benefit of write-through to main memory is that it simplifies the design of the

computer system. With write-through, the main memory always has an up-to-date copy of the

line. So when a read is done, main memory can always reply with the requested data.

If write-back is used, sometimes the up-to-date data is in a processor cache, and sometimes it is

in main memory. If the data is in a processor cache, then that processor must stop main memory

from replying to the read request, because the main memory might have a stale copy of the data.

This is more complicated than write-through.

Also, write-through can simplify the cache coherency protocol because it doesn't need

the Modifystate. The Modify state records that the cache must write back the cache line before it

invalidates or evicts the line. In write-through a cache line can always be invalidated without

writing back since memory already has an up-to-date copy of the line.

Cache Coherence:

In a shared memory multiprocessor with a separate cache memory for each processor , it is

possible to have many copies of any one instruction operand : one copy in the main memory and

one in each cache memory. When one copy of an operand is changed, the other copies of the

operand must be changed also. Cache coherence is the discipline that ensures that changes in the

values of shared operands are propagated throughout the system in a timely fashion.

Virtual Memory

Virtual memory is the separation of logical memory from physical memory. This separation

provides large virtual memory for programmers when only small physical memory is available.

https://searchstorage.techtarget.com/definition/cache-memory
https://whatis.techtarget.com/definition/processor
https://whatis.techtarget.com/definition/operand
https://searchstorage.techtarget.com/definition/cache

AY:2024-25 COMPUTER ORGANIZATION

65 DEPT OF CSE

Virtual memory is used to give programmers the illusion that they have a very large memory

even though the computer has a small main memory. It makes the task of programming easier

because the programmer no longer needs to worry about the amount of physical memory

available.

Address mapping using pages:

 The table implementation of the address mapping is simplified if the information in the

address space. And the memory space is each divided into groups of fixed size.

 Moreover, The physical memory is broken down into groups of equal size called blocks,
which may range from 64 to 4096 words each.

 The term page refers to groups of address space of the same size.

 Also, Consider a computer with an address space of 8K and a memory space of 4K.

 If we split each into groups of 1K words we obtain eight pages and four blocks as shown
in the figure.

 At any given time, up to four pages of address space may reside in main memory in any

one of the four blocks.

AY:2024-25 COMPUTER ORGANIZATION

66 DEPT OF CSE

Associative memory page table:

The implementation of the page table is vital to the efficiency of the virtual

memory technique, for each memory reference must also include a reference to the page table.

The fastest solution is a set of dedicated registers to hold the page table but this method is

impractical for large page tables because of the expense. But keeping the page table in main

memory could cause intolerable delays because even only one memory access for the page table

involves a slowdown of 100 percent and large page tables can require more than one memory

access. The solution is to augment the page table with special high-speed memory made up of

associative registers or translation look aside buffers (TLBs) which are called ASSOCIATIVE

MEMORY.

Page replacement

The advantage of virtual memory is that processes can be using more memory than

exists in the machine; when memory is accessed that is not present (a page fault), it must be

paged in (sometimes referred to as being "swapped in", although some people reserve "swapped

in to refer to bringing in an entire address space).

Swapping in pages is very expensive (it requires using the disk), so we'd like to avoid page

faults as much as possible. The algorithm that we use to choose which pages to evict to make

space for the new page can have a large impact on the number of page faults that occur.

AY:2024-25 COMPUTER ORGANIZATION

67 DEPT OF CSE

UNIT 5

Syllabus:

Input –Output Organization: Peripheral devices, Input-output subsystems, I/O device interface,

I/O Processor, I/O transfers–Program controlled, Interrupt driven, and DMA, interrupts and

exceptions. I/O device interfaces – SCII, USB Pipelining and Vector Processing: Basic

concepts, Instruction level Parallelism Throughput and Speedup, Pipeline hazards.

Introduction:

The I/O subsystem of a computer provides an efficient mode of communication between the

central system and the outside environment. It handles all the input-output operations of the

computer system.

Peripheral Devices

Input or output devices that are connected to computer are called peripheral devices. These

devices are designed to read information into or out of the memory unit upon command from the

CPU and are considered to be the part of computer system. These devices are also

called peripherals.

For example: Keyboards, display units and printers are common peripheral devices.

There are three types of peripherals:

1. Input peripherals : Allows user input, from the outside world to the computer.

Example: Keyboard, Mouse etc.

2. Output peripherals: Allows information output, from the computer to the outside

world. Example: Printer, Monitor etc

3. Input-Output peripherals: Allows both input(from outised world to computer) as well

as, output(from computer to the outside world). Example: Touch screen etc.

Interfaces

Interface is a shared boundary btween two separate components of the computer system which

can be used to attach two or more components to the system for communication purposes.

There are two types of interface:

1. CPU Inteface

2. I/O Interface

Let's understand the I/O Interface in details,

AY:2024-25 COMPUTER ORGANIZATION

68 DEPT OF CSE

Input-Output Interface

Peripherals connected to a computer need special communication links for interfacing with

CPU. In computer system, there are special hardware components between the CPU and

peripherals to control or manage the input-output transfers. These components are called input-

output interface units because they provide communication links between processor bus and

peripherals. They provide a method for transferring information between internal system and

input-output devices.

Asynchronous Data Transfer

We know that, the internal operations in individual unit of digital system are synchronized by

means of clock pulse, means clock pulse is given to all registers within a unit, and all data

transfer among internal registers occur simultaneously during occurrence of clock pulse.Now,

suppose any two units of digital system are designed independently such as CPU and I/O

interface.

And if the registers in the interface(I/O interface) share a common clock with CPU registers,

then transfer between the two units is said to be synchronous.But in most cases, the internal

timing in each unit is independent from each other in such a way that each uses its own private

clock for its internal registers.In that case, the two units are said to be asynchronous to each

other, and if data transfer occur between them this data transfer is said to be Asynchronous

Data Transfer.

But, the Asynchronous Data Transfer between two independent units requires that control

signals be transmitted between the communicating units so that the time can be indicated at

which they send data.

This asynchronous way of data transfer can be achieved by two methods:

1. One way is by means of strobe pulse which is supplied by one of the units to

other unit.When transfer has to occur.This method is known as “Strobe Control”.

2. Another method commonly used is to accompany each data item being

transferred with a control signal that indicates the presence of data in the bus.The unit

receiving the data item responds with another signal to acknowledge receipt of the

data.This method of data transfer between two independent units is said to be

“Handshaking”.

The strobe pulse and handshaking method of asynchronous data transfer are not restricted to I/O

transfer.In fact, they are used extensively on numerous occasion requiring transfer of data

between two independent units.So, here we consider the transmitting unit as source and

receiving unit as destination.

As an example: The CPU, is the source during an output or write transfer and is the destination

unit during input or read transfer.

And thus, the sequence of control during an asynchronous transfer depends on whether the

transfer is initiated by the source or by the destination.

So, while discussing each way of data transfer asynchronously we see the sequence of control in

both terms when it is initiated by source or when it is initiated by destination.In this way, each

way of data transfer, can be further divided into parts, source initiated and destination initiated.

AY:2024-25 COMPUTER ORGANIZATION

69 DEPT OF CSE

We can also specify, asynchronous transfer between two independent units by means of a timing
diagram that shows the timing relationship that exists between the control and the data buses.

Now, we will discuss each method of asynchronous data transfer in detail one by one.

1. Strobe Control:

The Strobe Control method of asynchronous data transfer employs a single control line to

time each transfer .This control line is also known as strobe and it may be achieved either

by source or destination, depending on which initiate transfer.

Source initiated strobe for data transfer:

The block diagram and timing diagram of strobe initiated by source unit is shown in figure

below:

In block diagram we see that strobe is initiated by source, and as shown in timing

diagram, the source unit first places the data on the data bus.After a brief delay to ensure that the

data settle to a steady value, the source activates a strobe pulse.The information on data bus and

strobe control signal remain in the active state for a sufficient period of time to allow the

destination unit to receive the data.Actually, the destination unit, uses a falling edge of strobe

control to transfer the contents of data bus to one of its internal registers.The source removes

the data from the data bus after it disables its strobe pulse.New valid data will be available only

after the strobe is enabled again.

Destination-initiated strobe for data transfer:

The block diagram and timing diagram of strobe initiated by destination is shown in figure
below:

AY:2024-25 COMPUTER ORGANIZATION

70 DEPT OF CSE

In block diagram, we see that, the strobe initiated by destination, and as shown in timing

diagram, the destination unit first activates the strobe pulse, informing the source to provide the

data.The source unit responds by placing the requested binary information on the data bus.The

data must be valid and remain in the bus long enough for the destination unit to accept it.The

falling edge of strobe pulse can be used again to trigger a destination register.The destination

unit then disables the strobe.And source removes the data from data bus after a per determine

time interval.

Now, actually in computer, in the first case means in strobe initiated by source - the strobe

may be a memory-write control signal from the CPU to a memory unit.The source, CPU, places

the word on the data bus and informs the memory unit, which is the destination, that this is a

write operation.

And in the second case i.e, in the strobe initiated by destination - the strobe may be a memory

read control from the CPU to a memory unit.The destination, the CPU, initiates the read

operation to inform the memory, which is a source unit, to place selected word into the data bus.

2. Handshaking:

The disadvantage of strobe method is that source unit that initiates the transfer has no way of

knowing whether the destination has actually received the data that was placed in the

bus.Similarly, a destination unit that initiates the transfer has no way of knowing whether the

source unit, has actually placed data on the bus.

This problem can be solved by handshaking method.

Hand shaking method introduce a second control signal line that provides a replay to the unit
that initiates the transfer.

In it, one control line is in the same direction as the data flow in the bus from the source to

destination.It is used by source unit to inform the destination unit whether there are valid data in

the bus.The other control line is in the other direction from destination to the source.It is used

by the destination unit to inform the source whether it can accept data.And in it also, sequence

of control depends on unit that initiate transfer.Means sequence of control depends whether

transfer is initiated by source and destination.Sequence of control in both of them are described

below:

AY:2024-25 COMPUTER ORGANIZATION

71 DEPT OF CSE

Source initiated Handshaking:

The source initiated transfer using handshaking lines is shown in figure below:

In its block diagram, we se that two handshaking lines are "data valid", which is generated by

the source unit, and "data accepted", generated by the destination unit.

The timing diagram shows the timing relationship of exchange of signals between the two

units.Means as shown in its timing diagram, the source initiates a transfer by placing data on the

bus and enabling its data valid signal.The data accepted signal is then activated by destination

unit after it accepts the data from the bus.The source unit then disable its data valid signal which

invalidates the data on the bus.After this, the destination unit disables its data accepted signal

and the system goes into initial state.The source unit does not send the next data item until after

the destination unit shows its readiness to accept new data by disabling the data accepted signal.

This sequence of events described in its sequence diagram, which shows the above sequence

in which the system is present, at any given time.

Destination initiated handshaking:

The destination initiated transfer using handshaking lines is shown in figure below:

AY:2024-25 COMPUTER ORGANIZATION

72 DEPT OF CSE

In its block diagram, we see that the two handshaking lines are "data valid", generated by the

source unit, and "ready for data" generated by destination unit.Note that the name of signal data

accepted generated by destination unit has been changed to ready for data to reflect its new

meaning.

In it, transfer is initiated by destination, so source unit does not place data on data bus until it

receives ready for data signal from destination unit.After that, hand shaking process is some as

that of source initiated.

The sequence of event in it are shown in its sequence diagram and timing relationship

between signals is shown in its timing diagram.

Thus, here we can say that, sequence of events in both cases would be identical.If we

consider ready for data signal as the complement of data accept.Means, the only difference

between source and destination initiated transfer is in their choice of initial state.

Modes of I/O Data Transfer

Data transfer between the central unit and I/O devices can be handled in generally three
types of modes which are given below:

1. Programmed I/O

2. Interrupt Initiated I/O

3. Direct Memory Access

AY:2024-25 COMPUTER ORGANIZATION

73 DEPT OF CSE

Programmed I/O

Programmed I/O instructions are the result of I/O instructions written in computer

program. Each data item transfer is initiated by the instruction in the program.

Usually the program controls data transfer to and from CPU and peripheral. Transferring data

under programmed I/O requires constant monitoring of the peripherals by the CPU.

Interrupt Initiated I/O

In the programmed I/O method the CPU stays in the program loop until the I/O unit

indicates that it is ready for data transfer. This is time consuming process because it keeps the

processor busy needlessly.

This problem can be overcome by using interrupt initiated I/O. In this when the interface

determines that the peripheral is ready for data transfer, it generates an interrupt. After receiving

the interrupt signal, the CPU stops the task which it is processing and service the I/O transfer

and then returns back to its previous processing task.

Direct Memory Access

Removing the CPU from the path and letting the peripheral device manage the memory

buses directly would improve the speed of transfer. This technique is known as DMA.

In this, the interface transfer data to and from the memory through memory bus. A DMA

controller manages to transfer data between peripherals and memory unit.

Many hardware systems use DMA such as disk drive controllers, graphic cards, network cards

and sound cards etc. It is also used for intra chip data transfer in multicore processors. In DMA,

CPU would initiate the transfer, do other operations while the transfer is in progress and receive

an interrupt from the DMA controller when the transfer has been completed.

Priority Interrupt

A priority interrupt is a system which decides the priority at which various devices,

which generates the interrupt signal at the same time, will be serviced by the CPU. The system

has authority to decide which conditions are allowed to interrupt the CPU, while some other

interrupt is being serviced. Generally, devices with high speed transfer such as magnetic

disks are given high priority and slow devices such as keyboards are given low priority.

When two or more devices interrupt the computer simultaneously, the computer services the

device with the higher priority first.

AY:2024-25 COMPUTER ORGANIZATION

74 DEPT OF CSE

DIRECT MEMORY ACCESS

Block of data transfer from high speed devices, Drum, Disk, Tape

CPU bus signals for DMA transfer

Bus request

Bus granted

Block diagram of DMA controller
Address bus

Data bus

Address bus

Data bus

Read

Write

Address bus

buffers

High-impedence

(disabled)
when BG is

enabled

DMA select

Register select

Read

Write

Bus request

Bus grant

Interrupt

DS

RS

RD

WR Control
logic

BR

BG

Interrupt

Word count register

Control register

 DMA request

 DMA acknowledge to I/O device

* DMA controller - Interface which allows I/O transfer directly between

Memory and Device, freeing CPU for other tasks

* CPU initializes DMA Controller by sending memory

address and the block size(number of words)

DMA TRANSFER

 Address register

BR
CPU

BG

DBUS

RD

WR

Data bus

buffers



Interrupt

BG

BR

RD WR

CPU
Random-access
memory unit (RAM)

Addr Data RD WR Addr Data

Read control

Write control

Data bus

Address bus

DMA ack.

 DMA request

DMA
Controller

RS

BR

BG

Interrupt

RD WR Addr Data

DS

select

I/O

device

AY:2024-25 COMPUTER ORGANIZATION

75 DEPT OF CSE

Input/output Processor

An input-output processor (IOP) is a processor with direct memory access capability. In this, the

computer system is divided into a memory unit and number of processors.

Each IOP controls and manage the input-output tasks. The IOP is similar to CPU except that it

handles only the details of I/O processing. The IOP can fetch and execute its own instructions.

These IOP instructions are designed to manage I/O transfers only.

Block Diagram Of I/O Processor:

Below is a block diagram of a computer along with various I/O Processors. The memory unit

occupies the central position and can communicate with each processor.

The CPU processes the data required for solving the computational tasks. The IOP provides a

path for transfer of data between peripherals and memory. The CPU assigns the task of initiating

the I/O program.

The IOP operates independent from CPU and transfer data between peripherals and memory.

The communication between the IOP and the devices is similar to the program control method

of transfer. And the communication with the memory is similar to the direct memory access

method.

In large scale computers, each processor is independent of other processors and any processor

can initiate the operation.

The CPU can act as master and the IOP act as slave processor. The CPU assigns the task of

initiating operations but it is the IOP, who executes the instructions, and not the CPU. CPU

instructions provide operations to start an I/O transfer. The IOP asks for CPU through interrupt.

Instructions that are read from memory by an IOP are also called commands to distinguish them

from instructions that are read by CPU. Commands are prepared by programmers and are stored

in memory. Command words make the program for IOP. CPU informs the IOP where to find the

commands in memory.

AY:2024-25 COMPUTER ORGANIZATION

76 DEPT OF CSE

Pipelining and vector processing

Parallel processing

Execution of Concurrent Events in the computing process to achieve faster Computational

Speed

Levels of Parallel Processing

- Job or Program level

- Task or Procedure level

- Inter-Instruction level

- Intra-Instruction level

PARALLEL COMPUTERS

Architectural Classification

Flynn's classification

» Based on the multiplicity of Instruction Streams and Data Streams

» Instruction Stream

Sequence of Instructions read from memory

» Data Stream

Operations performed on the data in the processor

What is Pipelining?

Pipelining is the process of accumulating instruction from the processor through a

pipeline. It allows storing and executing instructions in an orderly process. It is also known

as pipeline processing.

Pipelining is a technique where multiple instructions are overlapped during execution. Pipeline

is divided into stages and these stages are connected with one another to form a pipe like

structure. Instructions enter from one end and exit from another end.

Pipelining increases the overall instruction throughput.

In pipeline system, each segment consists of an input register followed by a combinational

circuit. The register is used to hold data and combinational circuit performs operations on it. The

output of combinational circuit is applied to the input register of the next segment.

AY:2024-25 COMPUTER ORGANIZATION

77 DEPT OF CSE

Pipeline system is like the modern day assembly line setup in factories. For example in a car

manufacturing industry, huge assembly lines are setup and at each point, there are robotic arms

to perform a certain task, and then the car moves on ahead to the next arm.

Types of Pipeline

It is divided into 2 categories:

1. Arithmetic Pipeline

2. Instruction Pipeline

Arithmetic Pipeline

Arithmetic pipelines are usually found in most of the computers. They are used for floating

point operations, multiplication of fixed point numbers etc. For example: The input to the

Floating Point Adder pipeline is:

X = A*2^a

Y = B*2^b

Here A and B are mantissas (significant digit of floating point numbers), while a and b are

exponents.

The floating point addition and subtraction is done in 4 parts:

1. Compare the exponents.

2. Align the mantissas.

3. Add or subtract mantissas

4. Produce the result.

Registers are used for storing the intermediate results between the above operations.

AY:2024-25 COMPUTER ORGANIZATION

78 DEPT OF CSE

Instruction Pipeline

In this a stream of instructions can be executed by overlapping fetch, decode and execute phases

of an instruction cycle. This type of technique is used to increase the throughput of the computer

system.

An instruction pipeline reads instruction from the memory while previous instructions are being

executed in other segments of the pipeline. Thus we can execute multiple instructions

simultaneously. The pipeline will be more efficient if the instruction cycle is divided into

segments of equal duration.

Advantages of Pipelining

1. The cycle time of the processor is reduced.

2. It increases the throughput of the system

3. It makes the system reliable.

Disadvantages of Pipelining
1. The design of pipelined processor is complex and costly to manufacture.

2. The instruction latency is more.

Vector(Array) Processing

There is a class of computational problems that are beyond the capabilities of a

conventional computer. These problems require vast number of computations on multiple data

items, that will take a conventional computer(with scalar processor) days or even weeks to

complete.

Such complex instructions, which operates on multiple data at the same time, requires a better

way of instruction execution, which was achieved by Vector processors.

Scalar CPUs can manipulate one or two data items at a time, which is not very efficient. Also,

simple instructions like ADD A to B, and store into C are not practically efficient.

Addresses are used to point to the memory location where the data to be operated will be found,

which leads to added overhead of data lookup. So until the data is found, the CPU would be

sitting ideal, which is a big performance issue.

Hence, the concept of Instruction Pipeline comes into picture, in which the instruction passes

through several sub-units in turn. These sub-units perform various independent functions, for

example: the first one decodes the instruction, the second sub-unit fetches the data and

the thirdsub-unit performs the math itself. Therefore, while the data is fetched for one

instruction, CPU does not sit idle, it rather works on decoding the next instruction set, ending up

working like an assembly line.

Vector processor, not only use Instruction pipeline, but it also pipelines the data, working on

multiple data at the same time.

A normal scalar processor instruction would be ADD A, B, which leads to addition of two

operands, but what if we can instruct the processor to ADD a group of

numbers(from 0 to n memory location) to another group of numbers(lets say, n to k memory

location). This can be achieved by vector processors.

In vector processor a single instruction, can ask for multiple data operations, which saves time,

as instruction is decoded once, and then it keeps on operating on different data items.

AY:2024-25 COMPUTER ORGANIZATION

79 DEPT OF CSE

Applications of Vector Processors

Computer with vector processing capabilities are in demand in specialized applications. The

following are some areas where vector processing is used:

1. Petroleum exploration.

2. Medical diagnosis.

3. Data analysis.

4. Weather forecasting.

5. Aerodynamics and space flight simulations.

6. Image processing.

7. Artificial intelligence.

	ON
	R22A0508
	(2024-25)
	Prepared by

	MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY
	MALLAREDDY COLLEGE OF ENGINEERING & TECHNOLOGY
	Vision
	Mission
	PEO1–ANALYTICALSKILLS
	PEO2–TECHNICALSKILLS
	PEO3–SOFTSKILLS
	PEO4–PROFESSIONALETHICS

	PROGRAM OUTCOMES (POs)
	Engineering Graduates should possess the following:

	MALLA REDDY COLLEGE OF ENGINEERING &TECHNOLOGY
	INDEX
	UNIT I
	Basic Structure of Computers
	Computer Types
	Figure 1: Fetch, Decode and Execute steps in a Computer System
	GENERATION OF COMPUTERS
	First generation:
	Second generation:
	Third generation:
	Fourth generation:
	Beyond Fourth Generation:
	Functional Unit
	Figure 2: Basic functional units of a computer
	Basic Operational Concepts
	Figure 3: Connections between the processor and the memory
	Figure 4: Interaction between the memory and the ALU
	Figure 5: Single bus structure
	USER PROGRAM and OS ROUTINE INTERACTION
	Figure 6 :User program and OS routine sharing of the processor
	Processor clock:
	Basic performance equation:
	Performance measurements:
	Multiprocessor & microprocessors:
	Data Representation:
	Numeric Data Representation
	Representation:
	1. Sign and Magnitude Representation
	2. One’s Complement (1’s) Representation
	Floating-point representation
	UNIT 2
	Register Transfer
	Bus and Memory Transfers
	Arithmetic Microoperations
	Logic Microoperations
	Shift Microoperations
	Arithmetic Logic Shift Unit
	Basic Computer Organization and Design
	--
	Instruction Codes
	Format of Instruction
	Addressing Modes
	Computer Instructions:
	Example –
	Example – (1)
	Example – (2)
	Timing and Control
	Instruction Cycle
	Instruction Fetch and Decode
	Micro Programmed Control:
	Address Sequencing
	UNIT 3
	Computer Processing Unit Organization Introduction to CPU
	Stack Organization:
	Register stack:
	Memory Stack :
	INSTRUCTION FORMATS:
	Number of Addresses:
	Three-Address Machines:
	Two-Address Machines :
	One-Address Machines :
	INSTRUCTION TYPES
	Addressing Modes (1)
	Immediate Addressing:
	Direct Addressing:
	Indirect Addressing:
	Register Addressing:
	Register Indirect Addressing:
	Diaplacement Addressing:
	Relative Addressing:
	Base-Register Addressing:
	Indexing:
	Stack Addressing:

	UNIT 4
	Memory Hierarchy
	Memory Access Methods
	Main Memory
	Memory Address map:
	Auxiliary Memory
	Cache Memory
	Hit Ratio
	Associative Memory
	Memory Mapping and Concept of Virtual Memory
	Associative Mapping
	Direct Mapping
	Set Associative Mapping
	Replacement Algorithms
	Writing in to cache and cache Initialization:
	Cache Coherence:
	Virtual Memory
	Address mapping using pages:
	Associative memory page table:
	Page replacement
	UNIT 5
	Introduction:
	Peripheral Devices
	Interfaces
	Input-Output Interface
	Source initiated strobe for data transfer:
	Source initiated Handshaking:
	Destination initiated handshaking:

	Modes of I/O Data Transfer
	Programmed I/O
	Interrupt Initiated I/O
	Direct Memory Access
	Priority Interrupt

	DIRECT MEMORY ACCESS
	DMA TRANSFER
	Input/output Processor
	Pipelining and vector processing
	Levels of Parallel Processing
	Types of Pipeline
	Arithmetic Pipeline
	Instruction Pipeline
	Advantages of Pipelining
	Disadvantages of Pipelining
	Vector(Array) Processing
	Applications of Vector Processors

